
Problem 6.15 :

The received signal-plus-noise vector at the output of the matched filter may be represented as
(see (5-2-63) for example) :

rn =
√
Ese

j(θn−φ) +Nn

where θn = 0, π/2, π, 3π/2 for QPSK, and φ is the carrier phase. By raising rn to the fourth
power and neglecting all products of noise terms, we obtain :

r4
n ≈

(√Es

)4
ej4(θn−φ) + 4

(√Es

)3
Nn

≈
(√Es

)3 [√Ese
−j4φ + 4Nn

]
If the estimate is formed by averaging the received vectors {r4

n} over K signal intervals, we have
the resultant vector U = K

√Ese
−jφ + 4

∑K
n=1Nn. Let φ4 ≡ 4φ. Then, the estimate of φ4 is :

φ̂4 = − tan −1 Im(U)

Re(U)

Nn is a complex-valued Gaussian noise component with zero mean and variance σ
2 = N0/2.

Hence, the pdf of φ̂4 is given by (5-2-55) where :

γs =

(
K
√Es

)2

16 (2Kσ2)
=

K2Es

16KN0
=

KEs

16N0

To a first approximation, the variance of the estimate is :

σ2
φ̂4

≈ 1

γs

=
16

KEs/N0

Problem 6.16 :

The PDF of the carrier phase error φe, is given by :

p(φe) =
1√
2πσφ

e
− φ2

e
2σ2

φ

Thus the average probability of error is :

P̄2 =
∫ ∞

−∞
P2(φe)p(φe)dφe

=
∫ ∞

−∞
Q

[√
2Eb

N0
cos2 φe

]
p(φe)dφe

=
1

2πσφ

∫ ∞

−∞

∫ ∞√
2Eb
N0

cos2 φe

exp

[
−1
2

(
x2 +

φ2
e

σ2
φ

)]
dxdφe
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Problem 6.17:

The log-likelihood function of the symbol timing may be expressed in terms of the equivalent
low-pass signals as

ΛL(τ) = �
[

1
N0

∫
T0
r(t)sl

∗(t; τ)dt
]

= �
[

1
N0

∫
T0
r(t)

∑
n In

∗g∗(t− nT − τ)dt
]

= �
[

1
N0

∑
n In

∗yn(τ)
]

where yn(τ) =
∫
T0
r(t)g∗(t− nT − τ)dt.

A necessary condition for τ̂ to be the ML estimate of τ is

dΛL(τ)
τ

= 0 ⇒
d
dτ
[
∑

n In
∗yn(τ) +

∑
n Inyn

∗(τ)] = 0 ⇒∑
n In

∗ d
dτ
yn(τ) +

∑
n In

d
dτ
yn

∗(τ) = 0

If we express yn(τ) into its real and imaginary parts : yn(τ) = an(τ) + jbn(τ), the above
expression simplifies to the following condition for the ML estimate of the timing τ̂

∑
n

�[In]
d

dτ
an(τ) +

∑
n

�[In]
d

dτ
bn(τ) = 0

Problem 6.18:

We follow the exact same steps of the derivation found in Sec. 6.4. For a PAM signal In
∗ = In

and Jn = 0. Since the pulse g(t) is real, it follows that B(τ) in expression (6.4-6) is zero,
therefore (6.4-7) can be rewritten as

ΛL(φ, τ) = A(τ) cosφ

where

A(τ) =
1

N0

∑
Inyn(τ)

Then the necessary conditions for the estimates of φ and τ to be the ML estimates (6.4-8) and
(6.4-9) give

φ̂ML = 0

and ∑
n

In
d

dτ
[yn(τ)]τ=τ̂ML

= 0
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Problem 9.15 :

The SNR at the detector is :

Eb
N0

=
PbT

N0

=
Pb(1 + β)

N0W
= 30 dB



Since it is desired to expand the bandwidth by a factor of 10
3

while maintaining the same SNR,
the received power Pb should increase by the same factor. Thus the additional power needed is

Pa = 10 log10

10

3
= 5.2288 dB

Hence, the required transmitted power is :

PS = −3 + 5.2288 = 2.2288 dBW

P r oblem 9.16 :

The pulse x(t) having the raised cosine spectrum given by (9-2-26/27) is :

x(t) = sinc(t/T )
cos(πβt/T )

1− 4β2t2/T 2

The function sinc(t/T ) is 1 when t = 0 and 0 when t = nT . Therefore, the Nyquist criterion
will be satisfied as long as the function g(t) is :

g(t) =
cos(πβt/T )

1− 4β2t2/T 2
=

{
1 t = 0

bounded t �= 0

The function g(t) needs to be checked only for those values of t such that 4β2t2/T 2 = 1 or
βt = T

2
. However :

lim
βt→T

2

cos(πβt/T )

1− 4β2t2/T 2
= lim
x→1

cos(π
2
x)

1− x
and by using L’Hospital’s rule :

lim
x→1

cos(π
2
x)

1− x = lim
x→1

π

2
sin(
π

2
x) =

π

2
<∞

Hence :

x(nT ) =

{
1 n = 0
0 n �= 0

meaning that the pulse x(t) satisfies the Nyquist criterion.

P r oblem 9.17 :

Substituting the expression of Xrc(f) given by (8.2.22) in the desired integral, we obtain :

∫ ∞

−∞
Xrc(f)df =

∫ − 1−β
2T

− 1+β
2T

T

2

[
1 + cos

πT

β
(−f − 1− β

2T
)

]
df +

∫ 1−β
2T

− 1−β
2T

Tdf



+
∫ 1+β

2T

1−β
2T

T

2

[
1 + cos

πT

β
(f − 1− β

2T
)

]
df

=
∫ − 1−β

2T

− 1+β
2T

T

2
df + T

(
1− β
T

)
+

∫ 1+β
2T

1−β
2T

T

2
df

+
∫ − 1−β

2T

− 1+β
2T

cos
πT

β
(f +

1− β
2T

)df +
∫ 1+β

2T

1−β
2T

cos
πT

β
(f − 1− β

2T
)df

= 1 +
∫ 0

− β
T

cos
πT

β
xdx+

∫ β
T

0
cos
πT

β
xdx

= 1 +
∫ β

T

− β
T

cos
πT

β
xdx = 1 + 0 = 1



Problem 9.19 :

The bandwidth of the channel is :

W = 3000− 300 = 2700 Hz



Since the minimum transmission bandwidth required for bandpass signaling is R, where R is
the rate of transmission, we conclude that the maximum value of the symbol rate for the given
channel is Rmax = 2700. If anM-ary PAM modulation is used for transmission, then in order to
achieve a bit-rate of 9600 bps, with maximum rate of Rmax, the minimum size of the constellation
is M = 2k = 16. In this case, the symbol rate is :

R =
9600

k
= 2400 symbols/sec

and the symbol interval T = 1
R

= 1
2400

sec. The roll-off factor β of the raised cosine pulse used
for transmission is is determined by noting that 1200(1 + β) = 1350, and hence, β = 0.125.
Therefore, the squared root raised cosine pulse can have a roll-off of β = 0.125.



Problem 9.23 :

The roll-off factor β is related to the bandwidth by the expression 1+β
T

= 2W , or equivalently
R(1 + β) = 2W . The following table shows the symbol rate for the various values of the excess
bandwidth and for W = 1500 Hz.

β .25 .33 .50 .67 .75 1.00
R 2400 2256 2000 1796 1714 1500

The above results were obtained with the assumption that double-sideband PAM is employed,
so the available lowpass bandwidth will be from −W = 3000

2
to W Hz. If single-sideband

transmission is used, then the spectral efficiency is doubled, and the above symbol rates R are
doubled.

Problem 9.24 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a duobinary transmitting filter.

Data seq. Dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. Pn: 0 1 1 1 0 0 1 0 0 0 1 1
Transmitted seq. In: -1 1 1 1 -1 -1 1 -1 -1 -1 1 1
Received seq. Bn: 0 2 2 0 -2 0 0 -2 -2 0 2
Decoded seq. Dn: 1 0 0 1 0 1 1 0 0 1 0

Problem 9.25 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a modified duobinary transmitting filter.

Data seq. Dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. Pn: 0 0 1 0 1 1 1 0 0 0 0 1 0
Transmitted seq. In: -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
Received seq. Bn: 2 0 0 2 0 -2 -2 0 0 2 0
Decoded seq. Dn: 1 0 0 1 0 1 1 0 0 1 0



Problem 10.1 :

Suppose that am = +1 is the transmitted signal. Then the probability of error will be :

Pe|1 = P (ym < 0|am = +1)

= P (1 + nm + im < 0)

=
1

4
P (1/2 + nm < 0) +

1

4
P (3/2 + nm < 0) +

1

2
P (1 + nm < 0)

=
1

4
Q
[

1

2σn

]
+

1

4
Q
[

3

2σn

]
+

1

2
Q
[
1

σn

]

Due to the symmetry of the intersymbol interference, the probability of error, when am = −1 is
transmitted, is the same. Thus, the above result is the average probability of error.



Problem 10.10 :

(a) The equivalent discrete-time impulse response of the channel is :

h(t) =
1∑

n=−1

hnδ(t− nT ) = 0.3δ(t+ T ) + 0.9δ(t) + 0.3δ(t− T )

If by {cn} we denote the coefficients of the FIR equalizer, then the equalized signal is :

qm =
1∑

n=−1

cnhm−n

which in matrix notation is written as :
 0.9 0.3 0.

0.3 0.9 0.3
0. 0.3 0.9




 c−1

c0
c1


 =


 0

1
0






The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.
Thus, 

 c−1

c0
c1


 =


 −0.4762

1.4286
−0.4762




(b) The values of qm for m = ±2,±3 are given by

q2 =
1∑

n=−1

cnh2−n = c1h1 = −0.1429

q−2 =
1∑

n=−1

cnh−2−n = c−1h−1 = −0.1429

q3 =
1∑

n=−1

cnh3−n = 0

q−3 =
1∑

n=−1

cnh−3−n = 0

Problem 10.11 :

(a) The output of the zero-force equalizer is :

qm =
1∑

n=−1

cnxmn

With q0 = 1 and qm = 0 for m �= 0, we obtain the system :




1.0 0.1 −0.5
−0.2 1.0 0.1
0.05 −0.2 1.0





c−1

c0
c1


 =




0
1
0




Solving the previous system in terms of the equalizer’s coefficients, we obtain :


 c−1

c0
c1


 =


 0.000

0.980
0.196






(b) The output of the equalizer is :

qm =




0 m ≤ −4
c−1x−2 = 0 m = −3
c−1x−1 + c0x−2 = −0.49 m = −2
0 m = −1
1 m = 0
0 m = 1
c0x2 + x1c1 = 0.0098 m = 2
c1x2 = 0.0098 m = 3
0 m ≥ 4

Hence, the residual ISI sequence is

residual ISI = {. . . , 0,−0.49, 0, 0, 0, 0.0098, 0.0098, 0, . . .}
and its span is 6 symbols.



Problem 10.23 :

(a)
F (z) = 0.8− 0.6z−1 ⇒

X(z) ≡ F (z)F ∗(z−1) = (0.8− 0.6z−1) (0.8− 0.6z) = 1− 0.48z−1 − 0.48z

Thus, x0 = 1, x−1 = x1 = −0.48.

(b)

1

T

∞∑
n=−∞

∣∣∣∣H
(
ω +

2πn

T

)∣∣∣∣
2

= X
(
ejωT

)
= 1− 0.48e−jωT − 0.48ejωT = 1− 0.96 cosωT

(c) For the linear equalizer base on the mean-square-error criterion we have :

Jmin = T
2π

∫ π/T
−π/T

N0

1+N0−0.96 cosωT
dω

= 1
2π

∫ π
−π

N0

1+N0−0.96 cos θ
dθ

= 1
2π

(
N0

1+N0

) ∫ π
−π

1
1−a cos θ

dθ, a = 0.96
1+N0

But :
1

2π

∫ π

−π
1

1− a cos θ
dθ =

1√
1− a2

, a2 < 1

Therefore :

Jmin =
N0

1 +N0

1√
1−

(
0.96

1+N0

)2
=

N0√
(1 +N0)

2 − (0.96)2

(d) For the decision-feedback equalizer :

Jmin =
2N0

1 +N0 +
√
(1 +N0)

2 − (0.96)2

which follows from the result in example 10.3.1. Note that for N0 << 1,

Jmin ≈ 2N0

1 +
√
1− (0.96)2

≈ 1.56N0

In contrast, for the linear equalizer we have :

Jmin ≈ N0√
1− (0.96)2

≈ 3.57N0



(d) The metrics are

(y1 − 0.8I1)
2 , i = 1 and

∑
i

(yi − 0.8Ii + 0.6Ii−1)
2 , i ≥ 2

µ1 (I1 = 3) = [0.5− 3 ∗ 0.8]2 = 3.61

µ1 (I1 = 1) = [0.5− 1 ∗ 0.8]2 = 0.09

µ1 (I1 = −1) = [0.5 + 1 ∗ 0.8]2 = 1.69

µ1 (I1 = −3) = [0.5 + 3 ∗ 0.8]2 = 8.41

µ2 (I2 = 3, I1 = 3) = µ1(3) + [2− 2.4 + 3 ∗ 0.6]2 = 5.57

µ2 (3, 1) = µ1(1) + [2− 2.4 + 1 ∗ 0.6]2 = 0.13

µ2 (3,−1) = µ1(−1) + [2− 2.4− 1 ∗ 0.6]2 = 6.53

µ2 (3,−3) = µ1(−3) + [2− 2.4− 3 ∗ 0.6]2 = 13.25

µ2 (1, 3) = µ1(3) + [2− 0.8 + 3 ∗ 0.6]2 = 12.61

µ2 (1, 1) = µ1(1) + [2− 0.8 + 1 ∗ 0.6]2 = 3.33

µ2 (1,−1) = µ1(−1) + [2− 0.8− 1 ∗ 0.6]2 = 2.05

µ2 (1,−3) = µ1(−3) + [2− 0.8− 3 ∗ 0.6]2 = 8.77

µ2 (−1, 3) = µ1(3) + [2 + 0.8 + 3 ∗ 0.6]2 = 24.77

µ2 (−1, 1) = µ1(1) + [2 + 0.8 + 1 ∗ 0.6]2 = 11.65

µ2 (−1,−1) = µ1(−1) + [2 + 0.8− 1 ∗ 0.6]2 = 6.53

µ2 (−1,−3) = µ1(−3) + [2 + 0.8− 3 ∗ 0.6]2 = 9.41

µ2 (−3, 3) = µ1(3) + [2 + 2.4 + 3 ∗ 0.6]2 = 42.05

µ2 (−3, 1) = µ1(1) + [2 + 2.4 + 1 ∗ 0.6]2 = 25.09

µ2 (−3,−1) = µ1(−1) + [2 + 2.4− 1 ∗ 0.6]2 = 16.13

µ2 (−3,−3) = µ1(−3) + [2 + 2.4− 3 ∗ 0.6]2 = 15.17

The four surviving paths at this stage are minI1 [µ2(x, I1)] , x = 3, 1,−1,−3 or :

I2 = 3, I1 = 1 with metric µ2(3, 1) = 0.13
I2 = 1, I1 = −1 with metric µ2(1,−1) = 2.05
I2 = −1, I1 = −1 with metric µ2(−1,−1) = 6.53
I2 = −3, I1 = −3 with metric µ2(−3,−3) = 15.17

Now we compute the metrics for the next stage :

µ3 (I3 = 3, I2 = 3, I1 = 1) = µ2(3, 1) + [−1− 2.4 + 1.8]2 = 2.69

µ3 (3, 1,−1) = µ2(1,−1) + [−1− 2.4 + 0.6]2 = 9.89

µ3 (3,−1,−1) = µ2(−1,−1) + [−1− 2.4− 0.6]2 = 22.53

µ3 (3,−3,−3) = µ2(−3,−3) + [−1− 2.4− 1.8]2 = 42.21



µ3 (1, 3, 1) = µ2(3, 1) + [−1− 0.8 + 1.8]2 = 0.13

µ3 (1, 1,−1) = µ2(1,−1) + [−1− 0.8 + 0.6]2 = 7.81

µ3 (1,−1,−1) = µ2(−1,−1) + [−1− 0.8− 0.6]2 = 12.29

µ3 (1,−3,−3) = µ2(−3,−3) + [−1− 0.8− 1.8]2 = 28.13

µ3 (−1, 3, 1) = µ2(3, 1) + [−1 + 0.8 + 1.8]2 = 2.69

µ3 (−1, 1,−1) = µ2(1,−1) + [−1 + 0.8 + 0.6]2 = 2.69

µ3 (−1,−1,−1) = µ2(−1,−1) + [−1 + 0.8− 0.6]2 = 7.17

µ3 (−1,−3,−3) = µ2(−3,−3) + [−1 + 0.8− 1.8]2 = 19.17

µ3 (−3, 3, 1) = µ2(3, 1) + [−1 + 2.4 + 1.8]2 = 10.37

µ3 (−3, 1,−1) = µ2(1,−1) + [−1 + 2.4 + 0.6]2 = 2.69

µ3 (−3,−1,−1) = µ2(−1,−1) + [−1 + 2.4− 0.6]2 = 7.17

µ3 (−3,−3,−3) = µ2(−3,−3) + [−1 + 2.4− 1.8]2 = 15.33

The four surviving sequences at this stage are minI2,I1 [µ3(x, I2, I1)] , x = 3, 1,−1,−3 or :

I3 = 3, I2 = 3, I1 = 1 with metric µ3(3, 3, 1) = 2.69
I3 = 1, I2 = 3, I1 = 1 with metric µ3(1, 3, 1) = 0.13
I3 = −1, I2 = 3, I1 = 1 with metric µ3(−1, 3, 1) = 2.69
I3 = −3, I2 = 1, I1 = −1 with metric µ3(−3, 1,−1) = 2.69

(e) For the channel, δ2
min = 1 and hence :

P4 = 8Q



√

6

15
γav







