Problem 9.14:

The bandwidth of the bandpass channel is :

$$
W=3300-300=3000 \mathrm{~Hz}
$$

In order to transmit 9600 bps with a symbor rate $R=\frac{1}{T}=2400$ symbols per second, the number of information bits per symbol should be :

$$
k=\frac{9600}{2400}=4
$$

Hence, a $2^{4}=16$ QAM signal constellation is needed. The carrier frequency f_{c} is set to 1800 Hz , which is the mid-frequency of the frequency band that the bandpass channel occupies. If a pulse with raised cosine spectrum and roll-off factor β is used for spectral shaping, then for the bandpass signal with bandwidth W :

$$
\frac{1}{2 T}(1+\beta)=\frac{W}{2}=1500 \Rightarrow \beta=0.25
$$

A sketch of the spectrum of the transmitted signal pulse is shown in the next figure.

Problem 9.16 :

The pulse $x(t)$ having the raised cosine spectrum given by $(9-2-26 / 27)$ is :

$$
x(t)=\operatorname{sinc}(t / T) \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}
$$

The function $\operatorname{sinc}(t / T)$ is 1 when $t=0$ and 0 when $t=n T$. Therefore, the Nyquist criterion will be satisfied as long as the function $g(t)$ is :

$$
g(t)=\frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}=\left\{\begin{array}{cc}
1 & t=0 \\
\text { bounded } & t \neq 0
\end{array}\right.
$$

The function $g(t)$ needs to be checked only for those values of t such that $4 \beta^{2} t^{2} / T^{2}=1$ or $\beta t=\frac{T}{2}$. However :

$$
\lim _{\beta t \rightarrow \frac{T}{2}} \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}=\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{1-x}
$$

and by using L'Hospital's rule :

$$
\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{1-x}=\lim _{x \rightarrow 1} \frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)=\frac{\pi}{2}<\infty
$$

Hence :

$$
x(n T)= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

meaning that the pulse $x(t)$ satisfies the Nyquist criterion.

Problem 9.20 :

Since the one-sided bandwidth of the ideal lowpass channel is $W=2400 \mathrm{~Hz}$, the rate of transmission is :

$$
R=2 \times 2400=4800 \text { symbols } / \mathrm{sec}
$$

(remember that PAM can be transmitted single-sideband; hence, if the lowpass channel has bandwidth from -W to W , the passband channel will have bandwidth equal to W; on the other hand, a PSK or QAM system will have passband bandwidth equal to $2 W$). The number of bits per symbol is

$$
k=\frac{14400}{4800}=3
$$

Hence, the number of transmitted symbols is $2^{3}=8$. If a duobinary pulse is used for transmission, then the number of possible transmitted symbols is $2 M-1=15$. These symbols have the form

$$
b_{n}=0, \pm 2 d, \pm 4 d, \ldots, \pm 12 d
$$

where $2 d$ is the minimum distance between the points of the 8 -PAM constellation. The probability mass function of the received symbols is

$$
P(b=2 m d)=\frac{8-|m|}{64}, \quad m=0, \pm 1, \ldots, \pm 7
$$

An upper bound of the probability of error is given by (see (9-3-18))

$$
P_{M}<2\left(1-\frac{1}{M^{2}}\right) Q\left[\sqrt{\left(\frac{\pi}{4}\right)^{2} \frac{6}{M^{2}-1} \frac{k \mathcal{E}_{b, a v}}{N_{0}}}\right]
$$

With $P_{M}=10^{-6}$ and $M=8$ we obtain

$$
\frac{k \mathcal{E}_{b, a v}}{N_{0}}=1.3193 \times 10^{3} \Longrightarrow \mathcal{E}_{b, a v}=0.088
$$

Problem 9.21 :

(a) The spectrum of the baseband signal is (see (4-4-12))

$$
\Phi_{V}(f)=\frac{1}{T} \Phi_{i} i(f)\left|X_{r c}(f)\right|^{2}=\frac{1}{T}\left|X_{r c}(f)\right|^{2}
$$

where $T=\frac{1}{2400}$ and

$$
X_{r c}(f)= \begin{cases}T & 0 \leq|f| \leq \frac{1}{4 T} \\ \frac{T}{2}\left(1+\cos \left(2 \pi T\left(|f|-\frac{1}{4 T}\right)\right)\right. & \frac{1}{4 T} \leq|f| \leq \frac{3}{4 T} \\ 0 & \text { otherwise }\end{cases}
$$

If the carrier signal has the form $c(t)=A \cos \left(2 \pi f_{c} t\right)$, then the spectrum of the DSB-SC modulated signal, $\Phi_{U}(f)$, is

$$
\Phi_{U}(f)=\frac{A}{2}\left[\Phi_{V}\left(f-f_{c}\right)+\Phi_{V}\left(f+f_{c}\right)\right]
$$

A sketch of $\Phi_{U}(f)$ is shown in the next figure.

(b) Assuming bandpass coherent demodulation using a matched filter, the received signal $r(t)$ is first passed through a linear filter with impulse response

$$
g_{R}(t)=A x_{r c}(T-t) \cos \left(2 \pi f_{c}(T-t)\right)
$$

The output of the matched filter is sampled at $t=T$ and the samples are passed to the detector. The detector is a simple threshold device that decides if a binary 1 or 0 was transmitted depending on the sign of the input samples. The following figure shows a block diagram of the optimum bandpass coherent demodulator.

Problem 9.31 :

In the case where the channel distortion is fully precompensated at the transmitter, the loss of SNR is given by

$$
10 \log L_{1}, \text { with } L_{1}=\int_{-W}^{W} \frac{X_{r c}(f)}{|C(f)|^{2}}
$$

whereas in the case of the equally split filters, the loss of SNR is given by

$$
10 \log \left[L_{2}\right]^{2}, \text { with } L_{2}=\int_{-W}^{W} \frac{X_{r c}(f)}{|C(f)|}
$$

Assuming that $1 / T=W$, so that we have a raised cosine characteristic with $\beta=0$, we have

$$
X_{r c}(f)=\frac{1}{2 W}\left[1+\cos \frac{\pi|f|}{W}\right]
$$

Then

$$
\begin{aligned}
L_{1} & =2 \int_{0}^{W} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{|C(f)|^{2}} \\
& =2\left[\int_{0}^{W / 2} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{1}+\int_{W / 2}^{W} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{1 / 4}\right] \\
& =\frac{5 \pi-6}{2 \pi}
\end{aligned}
$$

Hence, the loss for the first type of filters is $10 \log L_{1}=1.89 \mathrm{~dB}$.
In a similar way,

$$
\begin{aligned}
L_{2} & =2 \int_{0}^{W} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{|C(f)|} \\
& =2\left[\int_{0}^{W / 2} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{1}+\int_{W / 2}^{W} \frac{1}{2 W} \frac{\left[1+\cos \frac{\pi f}{W}\right]}{1 / 2}\right] \\
& =\frac{3 \pi-2}{2 \pi}
\end{aligned}
$$

Hence, the loss for the second type of filters is $10 \log \left[L_{2}\right]^{2}=1.45 \mathrm{~dB}$. As expected, the second type of filters which split the channel characteristics between the transmitter and the receiver exhibit a smaller SNR loss.

