Problem 13.2 :

The PN spread spectrum signal has a bandwidth W and the interference has a bandwidth W_{1}, where $W \gg W_{1}$. Upon multiplication of the received signal $r(t)$ with the PN reference at the receiver, we have the following (approximate) spectral characteristics

After multiplication with the PN reference, the interference power in the bandwidth $1 / T_{b}$ occupied by the signal is

$$
\left(\frac{J_{0} W_{1}}{W}\right)\left(\frac{1}{T_{b}}\right)=\frac{J_{0} W_{1}}{W T_{b}}
$$

Prior to multiplication, the noise power is $J_{0} W$. Therefore, in the bandwidth of the informationbearing signal, there is a reduction in the interference power by a factor $W T_{b}=\frac{T_{b}}{T_{c}}=L_{c}$, which is just the processing gain of the PN spread spectrum signal.

Problem 13.8 :

(a) We are given a system where $\left(J_{a v} / P_{a v}\right)_{d B}=20 d B, R=1000 \mathrm{bps}$ and $\left(\mathcal{E}_{b} / J_{0}\right)_{d B}=10 \mathrm{~dB}$. Hence, using the relation in (13-2-38) we obtain

$$
\begin{aligned}
\left(\frac{W}{R}\right)_{d B} & =\left(\frac{J_{a v}}{P_{a v}}\right)_{d B}+\left(\frac{\mathcal{E}_{b}}{J_{0}}\right)_{d B}=30 d B \\
\frac{W}{R} & =1000 \\
W & =1000 R=10^{6} \mathrm{~Hz}
\end{aligned}
$$

(b) The duty cycle of a pulse jammer for worst-case jamming is

$$
\alpha^{*}=\frac{0.71}{\mathcal{E}_{b} / J_{0}}=\frac{0.7}{10}=0.07
$$

The corresponding probability of error for this worst-case jamming is

$$
P_{2}=\frac{0.083}{\mathcal{E}_{b} / J_{0}}=\frac{0.083}{10}=8.3 \times 10^{-3}
$$

Problem 13.11 :

If the jammer is a pulse jammer with a duty cycle $\alpha=0.01$, the probability of error for binary PSK is given as

$$
P_{2}=\alpha Q\left(\sqrt{\frac{2 W / R}{J_{a v} / P_{a v}}}\right)
$$

For $P_{2}=10^{-5}$, and $\alpha=0.01$, we have

$$
Q\left(\sqrt{\frac{2 W / R}{J_{a v} / P_{a v}}}\right)=10^{-3}
$$

Then,

$$
\frac{W / R_{b}}{J_{a v} / P_{a v}}=\frac{500}{J_{a v} / P_{a v}}=5
$$

and

$$
\frac{J_{a v}}{P_{a v}}=100(20 \mathrm{~dB})
$$

Problem 13.12 :

$$
c(t)=\sum_{n=-\infty}^{\infty} c_{n} p\left(t-n T_{c}\right)
$$

The power spectral density of $c(t)$ is given by (8.1.25) as

$$
\Phi_{c}(f)=\frac{1}{T_{c}} \Phi_{c}(f)|P(f)|^{2}
$$

where

$$
|P(f)|^{2}=\left(A T_{c}\right)^{2} \sin c^{2}\left(f T_{c}\right), \quad T_{c}=1 \mu \mathrm{sec}
$$

and $\Phi_{c}(f)$ is the power spectral density of the sequence $\left\{c_{n}\right\}$. Since the autocorrelation of the sequence $\left\{c_{n}\right\}$ is periodic with period N and is given as

$$
\phi_{c}(m)= \begin{cases}N, & m=0, \pm N, \pm 2 N, \ldots \\ -1, & \text { otherwise }\end{cases}
$$

then, $\phi_{c}(m)$ can be represented in a discrete Fourier series as

$$
\phi_{c}(m)=\frac{1}{N} \sum_{k=0}^{N-1} r_{C}(k) e^{j 2 \pi m k / N}, m=0,1, \ldots, N-1
$$

where $\left\{r_{c}(k)\right\}$ are the Fourier series coefficients, which are given as

$$
r_{c}(k)=\sum_{m=0}^{N-1} \phi_{c}(m) e^{-j 2 \pi k m / N}, k=0,1, \ldots, N-1
$$

and $r_{c}(k+n N)=r_{c}(k)$ for $n=0, \pm 1, \pm 2, \ldots$ The latter can be evaluated to yield

$$
\begin{aligned}
r_{c}(k) & =N+1-\sum_{m=0}^{N-1} e^{-j 2 \pi k m / N} \\
& = \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\
N+1, & \text { otherwise }\end{cases}
\end{aligned}
$$

The power spectral density of the sequence $\left\{c_{n}\right\}$ may be expressed in terms of $\left\{r_{c}(k)\right\}$. These coefficients represent the power in the spectral components at the frequencies $f=k / N$. Therefore, we have

$$
\Phi_{c}(f)=\frac{1}{N} \sum_{k=-\infty}^{\infty} r_{c}(k) \delta\left(f-\frac{k}{N T_{c}}\right)
$$

Finally, we have

$$
\Phi_{c}(f)=\frac{1}{N T_{c}} \sum_{k=-\infty}^{\infty} r_{c}(k)\left|P\left(\frac{k}{N T_{c}}\right)\right|^{2} \delta\left(f-\frac{k}{N T_{c}}\right)
$$

