
Problem 4.1 :

(a)

x̂(t) =
1

π

∫ ∞

−∞
x(a)

t− a
da

Hence :
−x̂(−t) = − 1

π

∫∞
−∞

x(a)
−t−ada

= − 1
π

∫−∞
∞

x(−b)
−t+b (−db)

= − 1
π

∫∞
−∞

x(b)
−t+bdb

= 1
π

∫∞
−∞

x(b)
t−b db = x̂(t)

where we have made the change of variables : b = −a and used the relationship : x(b) = x(−b).

(b) In exactly the same way as in part (a) we prove :

x̂(t) = x̂(−t)

(c) x(t) = cosω0t, so its Fourier transform is : X(f) = 1
2
[δ(f − f0) + δ(f + f0)] , f0 = 2πω0.

Exploiting the phase-shifting property (4-1-7) of the Hilbert transform :

X̂(f) =
1

2
[−jδ(f − f0) + jδ(f + f0)] =

1

2j
[δ(f − f0)− δ(f + f0)] = F−1 {sin 2πf0t}

Hence, x̂(t) = sinω0t.

(d) In a similar way to part (c) :

x(t) = sinω0t ⇒ X(f) =
1

2j
[δ(f − f0)− δ(f + f0)]⇒ X̂(f) =

1

2
[−δ(f − f0)− δ(f + f0)]

⇒ X̂(f) = −1
2
[δ(f − f0) + δ(f + f0)] = −F−1 {cos 2πω0t} ⇒ x̂(t) = − cosω0t

(e) The positive frequency content of the new signal will be : (−j)(−j)X(f) = −X(f), f > 0,

while the negative frequency content will be : j · jX(f) = −X(f), f < 0.Hence, since
ˆ̂
X(f) =

−X(f), we have : ˆ̂x(t) = −x(t).



(f) Since the magnitude response of the Hilbert transformer is characterized by : |H(f)| = 1,

we have that :
∣∣∣X̂(f)∣∣∣ = |H(f)| |X(f)| = |X(f)| . Hence :∫ ∞

−∞

∣∣∣X̂(f)∣∣∣2 df = ∫ ∞

−∞
|X(f)|2 df

and using Parseval’s relationship :

∫ ∞

−∞
x̂2(t)dt =

∫ ∞

−∞
x2(t)dt

(g) From parts (a) and (b) above, we note that if x(t) is even, x̂(t) is odd and vice-versa.
Therefore, x(t)x̂(t) is always odd and hence :

∫∞
−∞ x(t)x̂(t)dt = 0.

Problem 4.2 :

We have :
x̂(t) = h(t) ∗ x(t)

where h(t) = 1
πt
and H(f) =

{ −j, f > 0
j, f < 0

}
. Hence :

Φx̂x̂(f) = Φxx(f) |H(f)|2 = Φxx(f)

and its inverse Fourier transform :
φx̂x̂(τ) = φxx(τ)

Also :
φxx̂(τ) = E [x(t+ τ)x̂(t)]

= 1
π

∫∞
−∞

E[x(t+τ)x(a)]
t−a da

= 1
π

∫∞
−∞

φxx(t+τ−a)
t−a da

= − 1
π

∫−∞
∞

φxx(b)
b−τ db

= 1
π

∫∞
−∞

φxx(b)
τ−b db = −φxx(τ)



Problem 4.3 :

(a)
E [z(t)z(t + τ)] = E [{x(t+ τ) + jy(t+ t)} {x(t) + jy(t)}]

= E [x(t)x(t + τ)]− E [y(t)y(t+ τ)] + jE [x(t)y(t+ τ)]
+E [y(t)x(t+ τ)]

= φxx(τ)− φyy(τ) + j [φyx(τ) + φxy(τ)]

But φxx(τ) = φyy(τ)and φyx(τ) = −φxy(τ). Therefore :

E [z(t)z(t + τ)] = 0

(b)

V =
∫ T

0
z(t)dt

E
(
V 2
)
=
∫ T

0

∫ T

0
E [z(a)z(b)] dadb = 0

from the result in (a) above. Also :

E (V V ∗) =
∫ T
0

∫ T
0 E [z(a)z∗(b)] dadb

=
∫ T
0

∫ T
0 2N0δ(a− b)dadb

=
∫ T
0 2N0da = 2N0T



Problem 4.9 :

The energy of the signal waveform s′m(t) is :

E ′ =
∫ ∞

−∞
|s′m(t)|2 dt =

∫ ∞

−∞

∣∣∣∣∣sm(t)− 1

M

M∑
k=1

sk(t)

∣∣∣∣∣
2

dt

=
∫ ∞

−∞
s2
m(t)dt+

1

M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

− 1

M

M∑
k=1

∫ ∞

−∞
sm(t)sk(t)dt− 1

M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

= E + 1

M2

M∑
k=1

M∑
l=1

Eδkl − 2

M
E

= E + 1

M
E − 2

M
E =

(
M − 1

M

)
E

The correlation coefficient is given by :

ρmn =
1

E ′

∫ ∞

−∞
s′m(t)s

′
n(t)dt =

1

E ′

∫ ∞

−∞

(
sm(t)− 1

M

M∑
k=1

sk(t)

)(
sn(t)− 1

M

M∑
l=1

sl(t)

)
dt

=
1

E ′

(∫ ∞

−∞
sm(t)sn(t)dt+

1

M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

)

− 1

E ′

(
1

M

M∑
k=1

∫ ∞

−∞
sn(t)sk(t)dt+

1

M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

)

=
1
M2ME − 1

M
E − 1

M
E

M−1
M

E = − 1

M − 1



Problem 4.17 :

The first basis function is :

g4(t) =
s4(t)√E4

=
s4(t)√
3
=

{
−1/√3, 0 ≤ t ≤ 3

0, o.w.

}

Then, for the second basis function :

c43 =
∫ ∞

−∞
s3(t)g4(t)dt = −1/

√
3⇒ g′3(t) = s3(t)− c43g4(t) =




2/3, 0 ≤ t ≤ 2
−4/3, 2 ≤ t ≤ 3
0, o.w




Hence :

g3(t) =
g′3(t)√
E3

=




1/
√
6, 0 ≤ t ≤ 2

−2/√6, 2 ≤ t ≤ 3
0, o.w




where E3 denotes the energy of g
′
3(t) : E3 =

∫ 3
0 (g

′
3(t))

2 dt = 8/3.
For the third basis function :

c42 =
∫ ∞

−∞
s2(t)g4(t)dt = 0 and c32 =

∫ ∞

−∞
s2(t)g3(t)dt = 0

Hence :
g′2(t) = s2(t)− c42g4(t)− c32g3(t) = s2(t)

and

g2(t) =
g′2(t)√E2

=




1/
√
2, 0 ≤ t ≤ 1

−1/√2, 1 ≤ t ≤ 2
0, o.w




where : E2 =
∫ 2
0 (s2(t))

2 dt = 2.
Finally for the fourth basis function :

c41 =
∫ ∞

−∞
s1(t)g4(t)dt = −2/

√
3, c31 =

∫ ∞

−∞
s1(t)g3(t)dt = 2/

√
6, c21 = 0

Hence :
g′1(t) = s1(t)− c41g4(t)− c31g3(t)− c21g2(t) = 0⇒ g1(t) = 0

home



The last result is expected, since the dimensionality of the vector space generated by these
signals is 3. Based on the basis functions (g2(t), g3(t), g4(t)) the basis representation of the
signals is :

s4 =
(
0, 0,

√
3
)
⇒ E4 = 3

s3 =
(
0,
√
8/3,−1/√3

)
⇒ E3 = 3

s2 =
(√

2, 0, 0
)
⇒ E2 = 2

s1 =
(
2/
√
6,−2/√3, 0

)
⇒ E1 = 2

home



Problem 4.18 :

s1 =
(√E , 0

)
s2 =

(
−√E , 0

)
s3 =

(
0,
√E
)

s4 =
(
0,−√E

)

✻

✲

f2

f1

s1s2

s4

s3

o o

o

o

æ
As we see, this signal set is indeed equivalent to a 4-phase PSK signal.

Problem 4.19 :

(a)(b) The signal space diagram, together with the Gray encoding of each signal point is given
in the following figure :

home



00

01

11

10

The signal points that may be transmitted at times t = 2nT n = 0, 1, ... are given with blank
circles, while the ones that may be transmitted at times t = 2nT + 1, n = 0, 1, ... are given
with filled circles.

home




