Problem 4.11 :

(a) As an orthonormal set of basis functions we consider the set

$$
\begin{array}{ll}
f_{1}(t)= \begin{cases}1 & 0 \leq t<1 \\
0 & \text { o.w }\end{cases} & f_{2}(t)= \begin{cases}1 & 1 \leq t<2 \\
0 & \text { o.w }\end{cases} \\
f_{3}(t)= \begin{cases}1 & 2 \leq t<3 \\
0 & \text { o.w }\end{cases} & f_{4}(t)= \begin{cases}1 & 3 \leq t<4 \\
0 & \text { o.w }\end{cases}
\end{array}
$$

In matrix notation, the four waveforms can be represented as

$$
\left(\begin{array}{l}
s_{1}(t) \\
s_{2}(t) \\
s_{3}(t) \\
s_{4}(t)
\end{array}\right)=\left(\begin{array}{rrrr}
2 & -1 & -1 & -1 \\
-2 & 1 & 1 & 0 \\
1 & -1 & 1 & -1 \\
1 & -2 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
f_{1}(t) \\
f_{2}(t) \\
f_{3}(t) \\
f_{4}(t)
\end{array}\right)
$$

Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the waveforms is 4
(b) The representation vectors are

$$
\begin{aligned}
& \mathbf{s}_{1}=\left[\begin{array}{llll}
2 & -1 & -1 & -1
\end{array}\right] \\
& \mathbf{s}_{2}=\left[\begin{array}{llll}
-2 & 1 & 1 & 0
\end{array}\right] \\
& \mathbf{s}_{3}=\left[\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right] \\
& \mathbf{s}_{4}=\left[\begin{array}{llll}
1 & -2 & -2 & 2
\end{array}\right]
\end{aligned}
$$

(c) The distance between the first and the second vector is:

$$
d_{1,2}=\sqrt{\left|\mathbf{s}_{1}-\mathbf{s}_{2}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
4 & -2 & -2 & -1
\end{array}\right]\right|^{2}}=\sqrt{25}
$$

Similarly we find that:

$$
\begin{aligned}
& d_{1,3}=\sqrt{\left|\mathbf{s}_{1}-\mathbf{s}_{3}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
1 & 0 & -2 & 0
\end{array}\right]\right|^{2}}=\sqrt{5} \\
& d_{1,4}=\sqrt{\left|\mathbf{s}_{1}-\mathbf{s}_{4}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
1 & 1 & 1 & -3
\end{array}\right]\right|^{2}}=\sqrt{12} \\
& d_{2,3}=\sqrt{\left|\mathbf{s}_{2}-\mathbf{s}_{3}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
-3 & 2 & 0 & 1
\end{array}\right]\right|^{2}}=\sqrt{14} \\
& d_{2,4}=\sqrt{\left|\mathbf{s}_{2}-\mathbf{s}_{4}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
-3 & 3 & 3 & -2
\end{array}\right]\right|^{2}}=\sqrt{31} \\
& d_{3,4}=\sqrt{\left|\mathbf{s}_{3}-\mathbf{s}_{4}\right|^{2}}=\sqrt{\left|\left[\begin{array}{llll}
0 & 1 & 3 & -3
\end{array}\right]\right|^{2}}=\sqrt{19}
\end{aligned}
$$

Thus, the minimum distance between any pair of vectors is $d_{\text {min }}=\sqrt{5}$.

Problem 4.13:

The power spectral density of $X(t)$ corresponds to : $\phi_{x x}(t)=2 B N_{0} \frac{\sin 2 \pi B t}{2 \pi B t}$. From the result of Problem 2.14:

$$
\phi_{y y}(\tau)=\phi_{x x}^{2}(0)+2 \phi_{x x}^{2}(\tau)=\left(2 B N_{0}\right)^{2}+8 B^{2} N_{0}^{2}\left(\frac{\sin 2 \pi B t}{2 \pi B t}\right)^{2}
$$

Also :

$$
\Phi_{y y}(f)=\phi_{x x}^{2}(0) \delta(f)+2 \Phi_{x x}(f) * \Phi_{x x}(f)
$$

The following figure shows the power spectral density of $Y(t)$:

Problem 4.23:

$x(t)=\operatorname{Re}\left[u(t) \exp \left(j 2 \pi f_{c} t\right)\right]$ where $u(t)=s(t) \pm j \hat{s}(t)$. Hence :

$$
U(f)=S(f) \pm j \hat{S}(f) \quad \text { where } \hat{S}(f)=\left\{\begin{array}{rr}
-j S(f), & f>0 \\
j S(f), & f<0
\end{array}\right\}
$$

So :

$$
U(f)=\left\{\begin{array}{ll}
S(f) \pm S(f), & f>0 \\
S(f) \mp S(f), & f<0
\end{array}\right\}=\left\{\begin{array}{ll}
2 S(f) \text { or } 0, & f>0 \\
0 \text { or } 2 S(f), & f<0
\end{array}\right\}
$$

Since the lowpass equivalent of $x(t)$ is single-sideband, we conclude that $x(t)$ is a single-sideband signal, too. Suppose, for example, that $s(t)$ has the following spectrum. Then, the spectra of the signals $u(t)$ (shown in the figure for the case $u(t)=s(t)+j \hat{s}(t))$ and $x(t)$ are single-sideband

Problem 4.30 :

The 16-QAM signal is represented as $s(t)=I_{n} \cos 2 \pi f t+Q_{n} \sin 2 \pi f t$, where $I_{n}=\{ \pm 1, \pm 3\}, Q_{n}=$ $\{ \pm 1, \pm 3\}$. A superposition of two 4 -QAM (4-PSK) signals is :

$$
s(t)=G\left[A_{n} \cos 2 \pi f t+B_{n} \sin 2 \pi f t\right]+C_{n} \cos 2 \pi f t+C_{n} \sin 2 \pi f t
$$

where $A_{n}, B_{n}, C_{n}, D_{n}=\{ \pm 1\}$. Clearly : $I_{n}=G A_{n}+C_{n}, Q_{n}=G B_{n}+D_{n}$. From these equations it is easy to see that $G=2$ gives the requires equivalence.

