
Problem 6.13 :

Assume that the signal um(t) is the input to the Costas loop. Then um(t) is multiplied by
cos(2πfct+ φ̂) and sin(2πfct+ φ̂), where cos(2πfct+ φ̂) is the output of the VCO. Hence :

umc(t)

= AmgT (t) cos(2πfct) cos(2πfct+ φ̂)− AmĝT (t) sin(2πfct) cos(2πfct+ φ̂)

=
AmgT (t)

2

[
cos(2π2fct+ φ̂) + cos(φ̂)

]
− AmĝT (t)

2

[
sin(2π2fct+ φ̂)− sin(φ̂)

]
ums(t)

= AmgT (t) cos(2πfct) sin(2πfct+ φ̂)− AmĝT (t) sin(2πfct) sin(2πfct+ φ̂)

=
AmgT (t)

2

[
sin(2π2fct+ φ̂) + sin(φ̂)

]
− AmĝT (t)

2

[
cos(φ̂)− cos(2π2fct+ φ̂)

]

The lowpass filters of the Costas loop will reject the double frequency components, so that :

ymc(t) =
AmgT (t)

2
cos(φ̂) +

AmĝT (t)

2
sin(φ̂)

yms(t) =
AmgT (t)

2
sin(φ̂)− AmĝT (t)

2
cos(φ̂)

Note that when the carrier phase has been extracted correctly, φ̂ = 0 and therefore :

ymc(t) =
AmgT (t)

2
, yms(t) = −AmĝT (t)

2

If the second signal, yms(t) is passed through a Hilbert transformer, then :

ŷms(t) = −Am
ˆ̂gT (t)

2
=

AmgT (t)

2



and by adding this signal to ymc(t) we obtain the original unmodulated signal.



Problem 6.16 :

The PDF of the carrier phase error φe, is given by :

p(φe) =
1√
2πσφ

e
− φ2

e
2σ2

φ

Thus the average probability of error is :

P̄2 =
∫ ∞

−∞
P2(φe)p(φe)dφe

=
∫ ∞

−∞
Q

[√
2Eb

N0
cos2 φe

]
p(φe)dφe

=
1

2πσφ

∫ ∞

−∞

∫ ∞√
2Eb
N0

cos2 φe

exp

[
−1
2

(
x2 +

φ2
e

σ2
φ

)]
dxdφe



Problem 9.6 :

(a)(b) In order to calculate the frequency response based on the impulse response, we need the
values of the impulse response at t = 0,±T/2, which are not given directly by the expression of
Problem 9.5. Using L’Hospital’s rule it is straightforward to show that:

x(0) =
1

2
+

2

π
, x(±T/2) =

√
2

2

(2 + π)

2π

Then, the frequency response of the filters with N = 10, 15, 20 compared to the frequency
response of the ideal square-root raised cosine filter are depicted in the following figure.
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As we see, there is no significant difference in the passband area of the filters, but the realizable,
truncated filters do have spectral sidelobes outside their (1 + β)/T nominal bandwidth. Still,
depending on how much residual ISI an application can tolerate, even the N = 10 filter appears
an acceptable approximation of the ideal (non-realizable) square-root raised cosine filter.



Problem 9.10 :

(a)
(i) x0 = 2, x1 = 1, x2 = −1, otherwise xn = 0. Then :

x(t) = 2
sin(2πWt)

2πWt
+

sin(2πW (t− 1/2W ))

2πW (t− 1/2W )
− sin(2πW (t− 1/W ))

2πW (t− 1/W )

and :
X(f) = 1

2W

[
2 + e−jπf/W − e−j2πf/W

]
, |f | ≤W ⇒

|X(f)| = 1
2W

[
6 + 2 cos πf

W
− 4 cos 2πf

W

]1/2
, |f | ≤W

The plot of |X(f)| is given in the following figure :
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(ii) x−1 = −1, x0 = 2, x1 = −1, otherwise xn = 0. Then :

x(t) = 2
sin(2πWt)

2πWt
− sin(2πW (t+ 1/2W ))

2πW (t+ 1/2W )
− sin(2πW (t− 1/2W ))

2πW (t− 1/2W )

and :

X(f) =
1

2W

[
2− e−jπf/W − e+jπf/W

]
=

1

2W

[
2− 2 cos

πf

W

]
=

1

W

[
1− cos

πf

W

]
, |f | ≤W

The plot of |X(f)| is given in the following figure :
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(b) Based on the results obtained in part (a) :
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(c) The possible received levels at the receiver are given by :
(i)

Bn = 2In + In−1 − In−2

where Im = ±1. Hence :
P (Bn = 0) = 1/4
P (Bn = −2) = 1/4
P (Bn = 2) = 1/4
P (Bn = −4) = 1/8
P (Bn = 4) = 1/8

(ii)
Bn = 2In − In−1 − In+1

where Im = ±1. Hence :
P (Bn = 0) = 1/4
P (Bn = −2) = 1/4
P (Bn = 2) = 1/4
P (Bn = −4) = 1/8
P (Bn = 4) = 1/8

Problem 9.11 :

The bandwidth of the bandpass channel is W = 4 KHz. Hence, the rate of transmission should
be less or equal to 4000 symbols/sec. If a 8-QAM constellation is employed, then the required
symbol rate is R = 9600/3 = 3200. If a signal pulse with raised cosine spectrum is used for
shaping, the maximum allowable roll-off factor is determined by :

1600(1 + β) = 2000

which yields β = 0.25. Since β is less than 50%, we consider a larger constellation. With a
16-QAM constellation we obtain :

R =
9600

4
= 2400

and :
1200(1 + β) = 2000

or β = 2/3, which satisfies the required conditions. The probability of error for an M-QAM
constellation is given by :

PM = 1− (1− P√M)2

where :

P√M = 2

(
1− 1√

M

)
Q

[√
3Eav

(M − 1)N0

]



With PM = 10−6 we obtain P√M = 5× 10−7 and therefore using the last equation and the table
of values for the Q(·) function, we find that the average transmitted energy is :

Eav = 24.70× 10−9

Note that if the desired spectral characteristic Xrc(f) is split evenly between the transmitting
and receiving filter, then the energy of the transmitting pulse is :∫ ∞

−∞
g2T (t)dt =

∫ ∞

−∞
|GT (f)|2df =

∫ ∞

−∞
Xrc(f)df = 1

Hence, the energy Eav = PavT depends only on the amplitude of the transmitted points and the
symbol interval T . Since T = 1

2400
, the average transmitted power is :

Pav =
Eav
T

= 24.70× 10−9 × 2400 = 592.8× 10−7

If the points of the 16-QAM constellation are evenly spaced with minimum distance between
them equal to d, then there are four points with coordinates (±d

2
,±d

2
), four points with coordi-

nates (±3d
2
,±3d

2
), and eight points with coordinates (±3d

2
,±d

2
), or (±d

2
,±3d

2
). Thus, the average

transmitted power is :

Pav =
1

2× 16

16∑
i=1

(A2
mc + A

2
ms) =

1

32

[
4× d

2

2
+ 4× 9d2

2
+ 8× 10d2

4

]
=

5

4
d2

Since Pav = 592.8× 10−7, we obtain

d =

√
4
Pav
5

= 0.0069




