Problem 4.15:

We have that $\Phi_{u u}(f)=\frac{1}{T}|G(f)|^{2} \Phi_{i i}(f)$ But $\mathrm{E}\left(I_{n}\right)=0, E\left(\left|I_{n}\right|^{2}\right)=1$, hence : $\phi_{i i}(m)=$ $\left\{\begin{array}{ll}1, & m=0 \\ 0, & m \neq 0\end{array}\right\}$. Therefore : $\Phi_{i i}(f)=1 \Rightarrow \Phi_{u u}(f)=\frac{1}{T}|G(f)|^{2}$.
(a) For the rectangular pulse :

$$
G(f)=A T \frac{\sin \pi f T}{\pi f T} e^{-j 2 \pi f T / 2} \Rightarrow|G(f)|^{2}=A^{2} T^{2} \frac{\sin ^{2} \pi f T}{(\pi f T)^{2}}
$$

where the factor $e^{-j 2 \pi f T / 2}$ is due to the $T / 2$ shift of the rectangular pulse from the center $t=0$. Hence :

$$
\Phi_{u u}(f)=A^{2} T \frac{\sin ^{2} \pi f T}{(\pi f T)^{2}}
$$

(b) For the sinusoidal pulse : $G(f)=\int_{0}^{T} \sin \frac{\pi t}{T} \exp (-j 2 \pi f t) d t$. By using the trigonometric identity $\sin x=\frac{\exp (j x)-\exp (-j x)}{2 j}$ it is easily shown that:

$$
G(f)=\frac{2 A T}{\pi} \frac{\cos \pi T f}{1-4 T^{2} f^{2}} e^{-j 2 \pi f T / 2} \Rightarrow|G(f)|^{2}=\left(\frac{2 A T}{\pi}\right)^{2} \frac{\cos ^{2} \pi T f}{\left(1-4 T^{2} f^{2}\right)^{2}}
$$

Hence :

$$
\Phi_{u u}(f)=\left(\frac{2 A}{\pi}\right)^{2} T \frac{\cos ^{2} \pi T f}{\left(1-4 T^{2} f^{2}\right)^{2}}
$$

(c) The 3-db frequency for (a) is:

$$
\frac{\sin ^{2} \pi f_{3 d b} T}{\left(\pi f_{3 d b} T\right)^{2}}=\frac{1}{2} \Rightarrow f_{3 d b}=\frac{0.44}{T}
$$

(where this solution is obtained graphically), while the $3-\mathrm{db}$ frequency for the sinusoidal pulse on (b) is :

$$
\frac{\cos ^{2} \pi T f}{\left(1-4 T^{2} f^{2}\right)^{2}}=\frac{1}{2} \Rightarrow f_{3 d b}=\frac{0.59}{T}
$$

The rectangular pulse spectrum has the first spectral null at $f=1 / T$, whereas the spectrum of the sinusoidal pulse has the first null at $f=3 / 2 T=1.5 / T$. Clearly the spectrum for the rectangular pulse has a narrower main lobe. However, it has higher sidelobes.

Problem 4.20 :

The autocorrelation function for $u_{\Delta}(t)$ is :

$$
\begin{aligned}
\phi_{u_{\Delta} u_{\Delta}}(t) & =\frac{1}{2} E\left[u_{\Delta}(t+\tau) u_{\Delta}^{*}(t)\right] \\
& =\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left(I_{m} I_{n}^{*}\right) E\left[u(t+\tau-m T-\Delta) u^{*}(t-n T-\Delta)\right] \\
& =\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \phi_{i i}(m-n) E\left[u(t+\tau-m T-\Delta) u^{*}(t-n T-\Delta)\right] \\
& =\frac{1}{2} \sum_{m=-\infty}^{\infty} \phi_{i i}(m) \sum_{n=-\infty}^{\infty} E\left[u(t+\tau-m T-n T-\Delta) u^{*}(t-n T-\Delta)\right] \\
& =\frac{1}{2} \sum_{m=-\infty}^{\infty} \phi_{i i}(m) \sum_{n=-\infty}^{\infty} \int_{0}^{T} \frac{1}{T} u(t+\tau-m T-n T-\Delta) u^{*}(t-n T-\Delta) d \Delta
\end{aligned}
$$

Let $a=\Delta+n T, d a=d \Delta$, and $a \in(-\infty, \infty)$. Then :

$$
\begin{aligned}
\phi_{u_{\Delta} u_{\Delta}}(t) & =\frac{1}{2} \sum_{m=-\infty}^{\infty} \phi_{i i}(m) \sum_{n=-\infty}^{\infty} \int_{n T}^{(n+1) T} \frac{1}{T} u(t+\tau-m T-a) u^{*}(t-a) d a \\
& =\frac{1}{2} \sum_{m=-\infty}^{\infty} \phi_{i i}(m) \frac{1}{T} \int_{-\infty}^{\infty} u(t+\tau-m T-a) u^{*}(t-a) d a \\
& =\frac{1}{T} \sum_{m=-\infty}^{\infty} \phi_{i i}(m) \phi_{u u}(\tau-m T)
\end{aligned}
$$

Thus we have obtained the same autocorrelation function as given by (4.4.11). Consequently the power spectral density of $u_{\Delta}(t)$ is the same as the one given by (4.4.12) :

$$
\Phi_{u_{\Delta} u_{\Delta}}(f)=\frac{1}{T}|G(f)|^{2} \Phi_{i i}(f)
$$

Problem 4.21 :

(a) $B_{n}=I_{n}+I_{n-1}$. Hence :

I_{n}	I_{n-1}	B_{n}
1	1	2
1	-1	0
-1	1	0
-1	-1	-2

The signal space representation is given in the following figure, with $P\left(B_{n}=2\right)=P\left(B_{n}=\right.$ $-2)=1 / 4, \quad P\left(B_{n}=0\right)=1 / 2$.

(b)

$$
\begin{aligned}
\phi_{B B}(m) & =E\left[B_{n+m} B_{n}\right]=E\left[\left(I_{n+m}+I_{n+m-1}\right)\left(I_{n}+I_{n-1}\right)\right] \\
& =\phi_{i i}(m)+\phi_{i i}(m-1)+\phi_{i i}(m+1)
\end{aligned}
$$

Since the sequence $\left\{I_{n}\right\}$ consists of independent symbols :

$$
\phi_{i i}(m)=\left\{\begin{array}{cc}
E\left[I_{n+m}\right] E\left[I_{n}\right]=0 \cdot 0=0, & \mathrm{~m} \neq 0 \\
E\left[I_{n}^{2}\right]=1, & \mathrm{~m}=0
\end{array}\right\}
$$

Hence :

$$
\phi_{B B}(m)=\left\{\begin{array}{cc}
2, & \mathrm{~m}=0 \\
1, & \mathrm{~m}= \pm 1 \\
0, & \text { o.w }
\end{array}\right\}
$$

and

$$
\begin{aligned}
\Phi_{B B}(f) & =\sum_{m=-\infty}^{\infty} \phi_{B B}(m) \exp (-j 2 \pi f m T)=2+\exp (j 2 \pi f T)+\exp (-j 2 \pi f T) \\
& =2[1+\cos 2 \pi f T]=4 \cos ^{2} \pi f T
\end{aligned}
$$

A plot of the power spectral density $\Phi_{B}(f)$ is given in the following figure :

(c) The transition matrix is :

I_{n-1}	I_{n}	B_{n}	I_{n+1}	B_{n+1}
-1	-1	-2	-1	-2
-1	-1	-2	1	0
-1	1	0	-1	0
-1	1	0	1	2
1	-1	0	-1	-2
1	-1	0	1	0
1	1	2	-1	0
1	1	2	1	2

The corresponding Markov chain model is illustrated in the following figure :

Problem 4.22 :

(a) $I_{n}=a_{n}-a_{n-2}$, with the sequence $\left\{a_{n}\right\}$ being uncorrelated random variables (i.e $E\left(a_{n+m} a_{n}\right)=$ $\delta(m))$. Hence :

$$
\begin{aligned}
\phi_{i i}(m) & =E\left[I_{n+m} I_{n}\right]=E\left[\left(a_{n+m}-a_{n+m-2}\right)\left(a_{n}-a_{n-2}\right)\right] \\
& =2 \delta(m)-\delta(m-2)-\delta(m+2) \\
& =\left\{\begin{array}{rr}
2, & \mathrm{~m}=0 \\
-1, & \mathrm{~m}= \pm 2 \\
0, & \text { o.w. }
\end{array}\right\}
\end{aligned}
$$

(b) $\Phi_{u u}(f)=\frac{1}{T}|G(f)|^{2} \Phi_{i i}(f)$ where :

$$
\begin{aligned}
\Phi_{i i}(f) & =\sum_{m=-\infty}^{\infty} \phi_{i i}(m) \exp (-j 2 \pi f m T)=2-\exp (j 4 \pi f T)-\exp (-j 4 \pi f T) \\
& =2[1-\cos 4 \pi f T]=4 \sin ^{2} 2 \pi f T
\end{aligned}
$$

and

$$
|G(f)|^{2}=(A T)^{2}\left(\frac{\sin \pi f T}{\pi f T}\right)^{2}
$$

Therefore :

$$
\Phi_{u u}(f)=4 A^{2} T\left(\frac{\sin \pi f T}{\pi f T}\right)^{2} \sin ^{2} 2 \pi f T
$$

(c) If $\left\{a_{n}\right\}$ takes the values $(0,1)$ with equal probability then $E\left(a_{n}\right)=1 / 2$ and $E\left(a_{n+m} a_{n}\right)=$ $\left\{\begin{array}{ll}1 / 4, & \mathrm{~m} \neq 0 \\ 1 / 2, & \mathrm{~m}=0\end{array}\right\}=[1+\delta(m)] / 4$. Then :

$$
\begin{aligned}
\phi_{i i}(m) & =E\left[I_{n+m} I_{n}\right]=2 \phi_{a a}(0)-\phi_{a a}(2)-\phi_{a a}(-2) \\
& =\frac{1}{4}[2 \delta(m)-\delta(m-2)-\delta(m+2)]
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{i i}(f)=\sum_{m=-\infty}^{\infty} \phi_{i i}(m) \exp (-j 2 \pi f m T)=\sin ^{2} 2 \pi f T \\
& \Phi_{u u}(f)=A^{2} T\left(\frac{\sin \pi f T}{\pi f T}\right)^{2} \sin ^{2} 2 \pi f T
\end{aligned}
$$

Thus, we obtain the same result as in (b), but the magnitude of the various quantities is reduced by a factor of 4 .

