Problem 5.1 :

(a) Taking the inverse Fourier transform of $H(f)$, we obtain:

$$
\begin{aligned}
h(t) & =\mathcal{F}^{-1}[H(f)]=\mathcal{F}^{-1}\left[\frac{1}{j 2 \pi f}\right]-\mathcal{F}^{-1}\left[\frac{e^{-j 2 \pi f T}}{j 2 \pi f}\right] \\
& =\operatorname{sgn}(t)-\operatorname{sgn}(t-T)=2 \Pi\left(\frac{t-\frac{T}{2}}{T}\right)
\end{aligned}
$$

where $\operatorname{sgn}(x)$ is the signum signal (1 if $x>0$, -1 if $x<0$, and 0 if $x=0$) and $\Pi(x)$ is a rectangular pulse of unit height and width, centered at $x=0$.
(b) The signal waveform, to which $h(t)$ is matched, is :

$$
s(t)=h(T-t)=2 \Pi\left(\frac{T-t-\frac{T}{2}}{T}\right)=2 \Pi\left(\frac{\frac{T}{2}-t}{T}\right)=h(t)
$$

where we have used the symmetry of $\Pi\left(\frac{t-\frac{T}{2}}{T}\right)$ with respect to the $t=\frac{T}{2}$ axis.

Problem 5.2:

(a) The impulse response of the matched filter is:

$$
h(t)=s(T-t)= \begin{cases}\frac{A}{T}(T-t) \cos \left(2 \pi f_{c}(T-t)\right) & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

(b) The output of the matched filter at $t=T$ is :

$$
\begin{aligned}
& g(T)=\left.h(t) \star s(t)\right|_{t=T}=\int_{0}^{T} h(T-\tau) s(\tau) d \tau \\
&=\frac{A^{2}}{T^{2}} \int_{0}^{T}(T-\tau)^{2} \cos ^{2}\left(2 \pi f_{c}(T-\tau)\right) d \tau \\
& v=\stackrel{T-\tau}{=} \frac{A^{2}}{T^{2}} \int_{0}^{T} v^{2} \cos ^{2}\left(2 \pi f_{c} v\right) d v \\
&=\left.\frac{A^{2}}{T^{2}}\left[\frac{v^{3}}{6}+\left(\frac{v^{2}}{4 \times 2 \pi f_{c}}-\frac{1}{8 \times\left(2 \pi f_{c}\right)^{3}}\right) \sin \left(4 \pi f_{c} v\right)+\frac{v \cos \left(4 \pi f_{c} v\right)}{4\left(2 \pi f_{c}\right)^{2}}\right]\right|_{0} ^{T} \\
&=\frac{A^{2}}{T^{2}}\left[\frac{T^{3}}{6}+\left(\frac{T^{2}}{4 \times 2 \pi f_{c}}-\frac{1}{8 \times\left(2 \pi f_{c}\right)^{3}}\right) \sin \left(4 \pi f_{c} T\right)+\frac{T \cos \left(4 \pi f_{c} T\right)}{4\left(2 \pi f_{c}\right)^{2}}\right]
\end{aligned}
$$

(c) The output of the correlator at $t=T$ is:

$$
\begin{aligned}
q(T) & =\int_{0}^{T} s^{2}(\tau) d \tau \\
& =\frac{A^{2}}{T^{2}} \int_{0}^{T} \tau^{2} \cos ^{2}\left(2 \pi f_{c} \tau\right) d \tau
\end{aligned}
$$

However, this is the same expression with the case of the output of the matched filter sampled at $t=T$. Thus, the correlator can substitute the matched filter in a demodulation system and vice versa.

Problem 5.4:

(a) The correlation type demodulator employes a filter :

$$
f(t)=\left\{\begin{array}{ll}
\frac{1}{\sqrt{T}} & 0 \leq \mathrm{t} \leq \mathrm{T} \\
0 & \text { o.w }
\end{array}\right\}
$$

as given in Example 5-1-1. Hence, the sampled outputs of the crosscorrelators are :

$$
r=s_{m}+n, \quad m=0,1
$$

where $s_{0}=0, s_{1}=A \sqrt{T}$ and the noise term n is a zero-mean Gaussian random variable with variance :

$$
\sigma_{n}^{2} \frac{N_{0}}{2}
$$

The probability density function for the sampled output is :

$$
\begin{aligned}
& p\left(r \mid s_{0}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{r^{2}}{N_{0}}} \\
& p\left(r \mid s_{1}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(r-A \sqrt{T})^{2}}{N_{0}}}
\end{aligned}
$$

Since the signals are equally probable, the optimal detector decides in favor of s_{0} if

$$
\operatorname{PM}\left(\mathbf{r}, \mathbf{s}_{0}\right)=p\left(r \mid s_{0}\right)>p\left(r \mid s_{1}\right)=\operatorname{PM}\left(\mathbf{r}, \mathbf{s}_{1}\right)
$$

otherwise it decides in favor of s_{1}. The decision rule may be expressed as:

$$
\frac{\operatorname{PM}\left(\mathbf{r}, \mathbf{s}_{0}\right)}{\operatorname{PM}\left(\mathbf{r}, \mathbf{s}_{1}\right)}=e^{\frac{(r-A \sqrt{T})^{2}-r^{2}}{N_{0}}}=e^{-\frac{(2 r-A \sqrt{T}) A \sqrt{T}}{N_{0}}} \stackrel{s_{0}}{\gtrless} 1
$$

or equivalently :

$$
r \stackrel{s_{1}}{\stackrel{s_{0}}{\gtrless}} \frac{1}{2} A \sqrt{T}
$$

The optimum threshold is $\frac{1}{2} A \sqrt{T}$.
(b) The average probability of error is:

$$
\begin{aligned}
P(e) & =\frac{1}{2} P\left(e \mid s_{0}\right)+\frac{1}{2} P\left(e \mid s_{1}\right) \\
& =\frac{1}{2} \int_{\frac{1}{2} A \sqrt{T}}^{\infty} p\left(r \mid s_{0}\right) d r+\frac{1}{2} \int_{-\infty}^{\frac{1}{2} A \sqrt{T}} p\left(r \mid s_{1}\right) d r \\
& =\frac{1}{2} \int_{\frac{1}{2} A \sqrt{T}}^{\infty} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{r^{2}}{N_{0}}} d r+\frac{1}{2} \int_{-\infty}^{\frac{1}{2} A \sqrt{T}} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(r-A \sqrt{T})^{2}}{N_{0}}} d r \\
& =\frac{1}{2} \int_{\frac{1}{2}}^{\infty} \sqrt{\frac{2}{N_{0}}} A \sqrt{T} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x+\frac{1}{2} \int_{-\infty}^{-\frac{1}{2} \sqrt{\frac{2}{N_{0}}} A \sqrt{T}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =Q\left[\frac{1}{2} \sqrt{\frac{2}{N_{0}}} A \sqrt{T}\right]=Q[\sqrt{\mathrm{SNR}}]
\end{aligned}
$$

where

$$
\mathrm{SNR}=\frac{\frac{1}{2} A^{2} T}{N_{0}}
$$

Thus, the on-off signaling requires a factor of two more energy to achieve the same probability of error as the antipodal signaling.

Problem 5.8 :

(a) Since the given waveforms are the equivalent lowpass signals :

$$
\begin{aligned}
& \mathcal{E}_{1}=\frac{1}{2} \int_{0}^{T}\left|s_{1}(t)\right|^{2} d t=\frac{1}{2} A^{2} \int_{0}^{T} d t=A^{2} T / 2 \\
& \mathcal{E}_{2}=\frac{1}{2} \int_{0}^{T}\left|s_{2}(t)\right|^{2} d t=\frac{1}{2} A^{2} \int_{0}^{T} d t=A^{2} T / 2
\end{aligned}
$$

Hence $\mathcal{E}_{1}=\mathcal{E}_{2}=\mathcal{E}$. Also : $\rho_{12}=\frac{1}{2 \mathcal{E}} \int_{0}^{T} s_{1}(t) s_{2}^{*}(t) d t=0$.
(b) Each matched filter has an equivalent lowpass impulse response : $h_{i}(t)=s_{i}(T-t)$. The following figure shows $h_{i}(t)$:

æ
(c)
(d)

(e) The outputs of the matched filters are different from the outputs of the correlators. The two sets of outputs agree at the sampling time $t=T$.
(f) Since the signals are orthogonal $\left(\rho_{12}=0\right)$ the error probability for AWGN is $P_{2}=Q\left(\sqrt{\frac{\mathcal{E}}{N_{0}}}\right)$, where $\mathcal{E}=A^{2} T / 2$.

Problem 5.10 :

(a) $U=\operatorname{Re}\left[\int_{0}^{T} r(t) s^{*}(t) d t\right]$, where $r(t)=\left\{\begin{array}{c}s(t)+z(t) \\ -s(t)+z(t) \\ z(t)\end{array}\right\}$ depending on which signal was sent. If we assume that $s(t)$ was sent :

$$
U=\operatorname{Re}\left[\int_{0}^{T} s(t) s^{*}(t) d t\right]+\operatorname{Re}\left[\int_{0}^{T} z(t) s^{*}(t) d t\right]=2 E+N
$$

where $E=\frac{1}{2} \int_{0}^{T} s(t) s^{*}(t) d t$, and $N=\operatorname{Re}\left[\int_{0}^{T} z(t) s^{*}(t) d t\right]$ is a Gaussian random variable with zero mean and variance $2 E N_{0}$ (as we have seen in Problem 5.7). Hence, given that $s(t)$ was sent, the probability of error is :

$$
P_{e 1}=P(2 E+N<A)=P(N<-(2 E-A))=Q\left(\frac{2 E-A}{\sqrt{2 N_{0} E}}\right)
$$

When $-s(t)$ is transmitted : $U=-2 E+N$, and the corresponding conditional error probability is :

$$
P_{e 2}=P(-2 E+N>-A)=P(N>(2 E-A))=Q\left(\frac{2 E-A}{\sqrt{2 N_{0} E}}\right)
$$

and finally, when 0 is transmitted : $U=N$, and the corresponding error probability is :

$$
P_{e 3}=P(N>A \text { or } N<-A)=2 P(N>A)=2 Q\left(\frac{A}{\sqrt{2 N_{0} E}}\right)
$$

(b)

$$
P_{e}=\frac{1}{3}\left(P_{e 1}+P_{e 2}+P_{e 3}\right)=\frac{2}{3}\left[Q\left(\frac{2 E-A}{\sqrt{2 N_{0} E}}\right)+Q\left(\frac{A}{\sqrt{2 N_{0} E}}\right)\right]
$$

(c) In order to minimize P_{e} :

$$
\frac{d P_{e}}{d A}=0 \Rightarrow A=E
$$

where we differentiate $Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-t^{2} / 2\right) d t$ with respect to x, using the Leibnitz rule : $\frac{d}{d x}\left(\int_{f(x)}^{\infty} g(a) d a\right)=-\frac{d f}{d x} g(f(x))$. Using this threshold :

$$
P_{e}=\frac{4}{3} Q\left(\frac{E}{\sqrt{2 N_{0} E}}\right)=\frac{4}{3} Q\left(\sqrt{\frac{E}{2 N_{0}}}\right)
$$

