Problem 5.1 :

(a) Taking the inverse Fourier transform of H(f), we obtain :
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where sgn(z) is the signum signal (1 if z > 0, -1 if 2 < 0, and 0 if x = 0) and II(z) is a
rectangular pulse of unit height and width, centered at z = 0.

(b) The signal waveform, to which A(t) is matched, is :
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where we have used the symmetry of 11 ( 5

) with respect to the t = L axis.

Problem 5.2 :

(a) The impulse response of the matched filter is :
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(b) The output of the matched filter at t =T is :
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(c) The output of the correlator at t = T is :
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However, this is the same expression with the case of the output of the matched filter sampled
at t = T. Thus, the correlator can substitute the matched filter in a demodulation system and

vice versa.



Problem 5.4 :

(a) The correlation type demodulator employes a filter :
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as given in Example 5-1-1. Hence, the sampled outputs of the crosscorrelators are :
r=Sn+n, m=20,1

where sqg = 0, s; = AvT and the noise term n is a zero-mean Gaussian random variable with
variance :
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The probability density function for the sampled output is :
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Since the signals are equally probable, the optimal detector decides in favor of sq if

PM(r, s9) = p(r|so) > p(r|s1) = PM(r,s;)



otherwise it decides in favor of s;. The decision rule may be expressed as:
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or equivalently :
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The optimum threshold is %A\/T

(b) The average probability of error is:

Ple) = %P(e|so)+%P(e|sl)
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Thus, the on-off signaling requires a factor of two more energy to achieve the same probability
of error as the antipodal signaling.




Problem 5.8 :
(a) Since the given waveforms are the equivalent lowpass signals :
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Hence 51 = 52 =£&. Also P12 = % fOT sl(t)sg(t)dt =0.

(b) Each matched filter has an equivalent lowpass impulse response : h;(t) = s;(T" —t) . The
following figure shows h;(t) :
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(e) The outputs of the matched filters are different from the outputs of the correlators. The
two sets of outputs agree at the sampling time t = T..

(f) Since the signals are orthogonal (p12 = 0) the error probability for AWGN is P, = @ (, / N%) ,
where £ = A*T/2.



Problem 5.10 :

s(t) + 2(t)
() U = Re [[f r(t)s*(t)dt], where r(t) =

—s(t) + 2(t) } depending on which signal was
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sent. If we assume that s(t) was sent :

U= Re [/OT s(t)s*(t)dt] + Re [/OT z(t)s*(t)dt] _9B+N

where £ = L [ s(t)s*(t)dt, and N = Re [fOT z(t)s*(t)dt} is a Gaussian random variable with
zero mean and variance 2F N, (as we have seen in Problem 5.7). Hence, given that s(¢) was
sent, the probability of error is :

P61:P(2E+N<A):P(N<_(QE_A)):Q@%)

When —s(t) is transmitted : U = —2F 4+ N, and the corresponding conditional error probability
is :
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and finally, when 0 is transmitted : U = N, and the corresponding error probability is :
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(c) In order to minimize P, :

dP,
dA
where we differentiate Q(x) = [.° \/% exp(—t2/2)dt with respect to x, using the Leibnitz rule :

4 (ff(‘;) g(a)da) = —L4(f(x)). Using this threshold :
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=0=>A=F






