
Problem 5.1 :

(a) Taking the inverse Fourier transform of H(f), we obtain :

h(t) = F−1[H(f)] = F−1

[
1

j2πf

]
− F−1

[
e−j2πfT

j2πf

]

= sgn(t) − sgn(t− T ) = 2Π

(
t− T

2

T

)

where sgn(x) is the signum signal (1 if x > 0, -1 if x < 0, and 0 if x = 0) and Π(x) is a
rectangular pulse of unit height and width, centered at x = 0.

(b) The signal waveform, to which h(t) is matched, is :

s(t) = h(T − t) = 2Π

(
T − t− T

2

T

)
= 2Π

(
T
2
− t
T

)
= h(t)

where we have used the symmetry of Π
(
t−T

2

T

)
with respect to the t = T

2
axis.

Problem 5.2 :

(a) The impulse response of the matched filter is :

h(t) = s(T − t) =

{
A
T
(T − t) cos(2πfc(T − t)) 0 ≤ t ≤ T

0 otherwise

(b) The output of the matched filter at t = T is :

g(T ) = h(t) � s(t)|t=T =
∫ T

0
h(T − τ)s(τ)dτ

=
A2

T 2

∫ T

0
(T − τ)2 cos2(2πfc(T − τ))dτ

v=T−τ
=

A2

T 2

∫ T

0
v2 cos2(2πfcv)dv

=
A2

T 2

[
v3

6
+

(
v2

4 × 2πfc
− 1

8 × (2πfc)3

)
sin(4πfcv) +

v cos(4πfcv)

4(2πfc)2

] ∣∣∣∣T
0

=
A2

T 2

[
T 3

6
+

(
T 2

4 × 2πfc
− 1

8 × (2πfc)3

)
sin(4πfcT ) +

T cos(4πfcT )

4(2πfc)2

]



(c) The output of the correlator at t = T is :

q(T ) =
∫ T

0
s2(τ)dτ

=
A2

T 2

∫ T

0
τ 2 cos2(2πfcτ)dτ

However, this is the same expression with the case of the output of the matched filter sampled
at t = T . Thus, the correlator can substitute the matched filter in a demodulation system and
vice versa.



 

 

 

 

 

 

 

Problem 5.4 :

(a) The correlation type demodulator employes a filter :

f(t) =

{
1√
T

0 ≤ t ≤ T

0 o.w

}

as given in Example 5-1-1. Hence, the sampled outputs of the crosscorrelators are :

r = sm + n, m = 0, 1

where s0 = 0, s1 = A
√
T and the noise term n is a zero-mean Gaussian random variable with

variance :

σ2
n

N0

2

The probability density function for the sampled output is :

p(r|s0) =
1√
πN0

e
− r2

N0

p(r|s1) =
1√
πN0

e
− (r−A

√
T )2

N0

Since the signals are equally probable, the optimal detector decides in favor of s0 if

PM(r, s0) = p(r|s0) > p(r|s1) = PM(r, s1)



otherwise it decides in favor of s1. The decision rule may be expressed as:

PM(r, s0)

PM(r, s1)
= e

(r−A
√

T )2−r2

N0 = e
− (2r−A

√
T )A

√
T

N0

s0
>
<
s1

1

or equivalently :

r

s1
>
<
s0

1

2
A
√
T

The optimum threshold is 1
2
A
√
T .

(b) The average probability of error is:

P (e) =
1

2
P (e|s0) +

1

2
P (e|s1)

=
1

2

∫ ∞
1
2
A
√
T
p(r|s0)dr +

1

2

∫ 1
2
A
√
T

−∞
p(r|s1)dr

=
1

2

∫ ∞
1
2
A
√
T

1√
πN0

e
− r2

N0 dr +
1

2

∫ 1
2
A
√
T

−∞
1√
πN0

e
− (r−A

√
T )2

N0 dr

=
1

2

∫ ∞
1
2

√
2

N0
A
√
T

1√
2π
e−

x2

2 dx+
1

2

∫ − 1
2

√
2

N0
A
√
T

−∞
1√
2π
e−

x2

2 dx

= Q

[
1

2

√
2

N0
A
√
T

]
= Q

[√
SNR

]
where

SNR =
1
2
A2T

N0

Thus, the on-off signaling requires a factor of two more energy to achieve the same probability
of error as the antipodal signaling.



Problem 5.8 :

(a) Since the given waveforms are the equivalent lowpass signals :

E1 = 1
2

∫ T
0 |s1(t)|2 dt = 1

2
A2

∫ T
0 dt = A2T/2

E2 = 1
2

∫ T
0 |s2(t)|2 dt = 1

2
A2

∫ T
0 dt = A2T/2

81



Hence E1 = E2 = E . Also :ρ12 = 1
2E
∫ T
0 s1(t)s

∗
2(t)dt = 0.

(b) Each matched filter has an equivalent lowpass impulse response : hi(t) = si(T − t) . The
following figure shows hi(t) :
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(d)
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(e) The outputs of the matched filters are different from the outputs of the correlators. The
two sets of outputs agree at the sampling time t = T.

(f) Since the signals are orthogonal (ρ12 = 0) the error probability for AWGN is P2 = Q
(√ E

N0

)
,

where E = A2T/2.



Problem 5.10 :

(a) U = Re
[∫ T

0 r(t)s
∗(t)dt

]
, where r(t) =


s(t) + z(t)
−s(t) + z(t)

z(t)

 depending on which signal was

sent. If we assume that s(t) was sent :

U = Re

[∫ T

0
s(t)s∗(t)dt

]
+Re

[∫ T

0
z(t)s∗(t)dt

]
= 2E +N

where E = 1
2

∫ T
0 s(t)s

∗(t)dt, and N = Re
[∫ T

0 z(t)s
∗(t)dt

]
is a Gaussian random variable with

zero mean and variance 2EN0 (as we have seen in Problem 5.7). Hence, given that s(t) was
sent, the probability of error is :

Pe1 = P (2E +N < A) = P (N < −(2E − A)) = Q

(
2E − A√

2N0E

)

When −s(t) is transmitted : U = −2E+N, and the corresponding conditional error probability
is :

Pe2 = P (−2E +N > −A) = P (N > (2E −A)) = Q

(
2E − A√

2N0E

)
and finally, when 0 is transmitted : U = N, and the corresponding error probability is :

Pe3 = P (N > A or N < −A) = 2P (N > A) = 2Q

(
A√

2N0E

)

(b)

Pe =
1

3
(Pe1 + Pe2 + Pe3) =

2

3

[
Q

(
2E −A√

2N0E

)
+Q

(
A√

2N0E

)]



(c) In order to minimize Pe :
dPe
dA

= 0 ⇒ A = E

where we differentiate Q(x) =
∫∞
x

1√
2π

exp(−t2/2)dt with respect to x, using the Leibnitz rule :
d
dx

(∫∞
f(x) g(a)da

)
= − df

dx
g(f(x)). Using this threshold :

Pe =
4

3
Q

(
E√

2N0E

)
=

4

3
Q

(√
E

2N0

)




