Problem 5.12 :

The correlation of the two signals in binary FSK is:

$$
\rho=\frac{\sin (2 \pi \Delta f T)}{2 \pi \Delta f T}
$$

To find the minimum value of the correlation, we set the derivative of ρ with respect to Δf equal to zero. Thus:

$$
\frac{\vartheta \rho}{\vartheta \Delta f}=0=\frac{\cos (2 \pi \Delta f T) 2 \pi T}{2 \pi \Delta f T}-\frac{\sin (2 \pi \Delta f T)}{(2 \pi \Delta f T)^{2}} 2 \pi T
$$

and therefore :

$$
2 \pi \Delta f T=\tan (2 \pi \Delta f T)
$$

Solving numerically (or graphically) the equation $x=\tan (x)$, we obtain $x=4.4934$. Thus,

$$
2 \pi \Delta f T=4.4934 \Longrightarrow \Delta f=\frac{0.7151}{T}
$$

and the value of ρ is -0.2172 .
We know that the probability of error can be expressed in terms of the distance d_{12} between the signal points, as :

$$
P_{e}=Q\left[\sqrt{\frac{d_{12}^{2}}{2 N_{0}}}\right]
$$

where the distance between the two signal points is :

$$
d_{12}^{2}=2 \mathcal{E}_{b}(1-\rho)
$$

and therefore :

$$
P_{e}=Q\left[\sqrt{\frac{2 \mathcal{E}_{b}(1-\rho)}{2 N_{0}}}\right]=Q\left[\sqrt{\frac{1.2172 \mathcal{E}_{b}}{N_{0}}}\right]
$$

Problem 5.13:
(a) It is straightforward to see that:

Set I : Four - level PAM
Set II : Orthogonal
Set III : Biorthogonal
(b) The transmitted waveforms in the first set have energy : $\frac{1}{2} A^{2}$ or $\frac{1}{2} 9 A^{2}$. Hence for the first set the average energy is :

$$
\mathcal{E}_{1}=\frac{1}{4}\left(2 \frac{1}{2} A^{2}+2 \frac{1}{2} 9 A^{2}\right)=2.5 A^{2}
$$

All the waveforms in the second and third sets have the same energy : $\frac{1}{2} A^{2}$.Hence :

$$
\mathcal{E}_{2}=\mathcal{E}_{3}=A^{2} / 2
$$

(c) The average probability of a symbol error for M-PAM is (5-2-45) :

$$
P_{4, P A M}=\frac{2(M-1)}{M} Q\left(\sqrt{\frac{6 \mathcal{E}_{a v}}{\left(M^{2}-1\right) N_{0}}}\right)=\frac{3}{2} Q\left(\sqrt{\frac{A^{2}}{N_{0}}}\right)
$$

(d) For coherent detection, a union bound can be given by (5-2-25) :

$$
P_{4, \text { orth }}<(M-1) Q\left(\sqrt{\mathcal{E}_{s} / N_{0}}\right)=3 Q\left(\sqrt{\frac{A^{2}}{2 N_{0}}}\right)
$$

while for non-coherent detection :

$$
P_{4, o r t h, n c} \leq(M-1) P_{2, n c}=3 \frac{1}{2} e^{-\mathcal{E}_{s} / 2 N_{0}}=\frac{3}{2} e^{-A^{2} / 4 N_{0}}
$$

(e) It is not possible to use non-coherent detection for a biorthogonal signal set : e.g. without phase knowledge, we cannot distinguish between the signals $u_{1}(t)$ and $u_{3}(t)$ (or $u_{2}(t) / u_{4}(t)$).
(f) The bit rate to bandwidth ratio for M-PAM is given by (5-2-85) :

$$
\left(\frac{R}{W}\right)_{1}=2 \log _{2} M=2 \log _{2} 4=4
$$

For orthogonal signals we can use the expression given by (5-2-86) or notice that we use a symbol interval 4 times larger than the one used in set I, resulting in a bit rate 4 times smaller :

$$
\left(\frac{R}{W}\right)_{2}=\frac{2 \log _{2} M}{M}=1
$$

Finally, the biorthogonal set has double the bandwidth efficiency of the orthogonal set :

$$
\left(\frac{R}{W}\right)_{3}=2
$$

Hence, set I is the most bandwidth efficient (at the expense of larger average power), but set III will also be satisfactory.

Problem 5.14:

The following graph shows the decision regions for the four signals :

As we see, using the transformation $W_{1}=U_{1}+U_{2}, W_{2}=U_{1}-U_{2}$ alters the decision regions to : $\left(W_{1}>0, W_{2}>0 \rightarrow s_{1}(t) ; W_{1}>0, W_{2}<0 \rightarrow s_{2}(t)\right.$; etc.). Assuming that $s_{1}(t)$ was transmitted, the outputs of the matched filters will be :

$$
\begin{aligned}
& U_{1}=2 \mathcal{E}+N_{1 r} \\
& U_{2}=N_{2 r}
\end{aligned}
$$

where $N_{1 r}, N_{2 r}$ are uncorrelated (Prob. 5.7) Gaussian-distributed terms with zero mean and variance $2 \mathcal{E} N_{0}$. Then :

$$
\begin{aligned}
& W_{1}=2 \mathcal{E}+\left(N_{1 r}+N_{2 r}\right) \\
& W_{2}=2 \mathcal{E}+\left(N_{1 r}-N_{2 r}\right)
\end{aligned}
$$

will be Gaussian distributed with means : $E\left[W_{1}\right]=E\left[W_{2}\right]=2 \mathcal{E}$, and variances : $E\left[W_{1}^{2}\right]=$ $E\left[W_{2}^{2}\right]=4 \mathcal{E} N_{0}$. Since U_{1}, U_{2} are independent, it is straightforward to prove that W_{1}, W_{2} are independent, too. Hence, the probability that a correct decision is made, assuming that $s_{1}(t)$ was transmitted is :

$$
\begin{aligned}
P_{c \mid s 1} & =P\left[W_{1}>0\right] P\left[W_{2}>0\right]=\left(P\left[W_{1}>0\right]\right)^{2} \\
& =\left(1-P\left[W_{1}<0\right]\right)^{2}=\left(1-Q\left(\frac{2 \mathcal{E}}{\sqrt{4 \mathcal{E} N_{0}}}\right)\right)^{2} \\
& =\left(1-Q\left(\sqrt{\frac{\mathcal{E}}{N_{0}}}\right)\right)^{2}=\left(1-Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)\right)^{2}
\end{aligned}
$$

where $\mathcal{E}_{b}=\mathcal{E} / 2$ is the transmitted energy per bit. Then :

$$
P_{e \mid s 1}=1-P_{c \mid s 1}=1-\left(1-Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)\right)^{2}=2 Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)\left[1-\frac{1}{2} Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)\right]
$$

This is the exact symbol error probability for the 4-PSK signal, which is expected since the vector space representations of the 4-biorthogonal and 4-PSK signals are identical.

Problem 5.15 :

(a) The output of the matched filter can be expressed as :

$$
y(t)=\operatorname{Re}\left[v(t) e^{j 2 \pi f_{c} t}\right]
$$

where $v(t)$ is the lowpass equivalent of the output:

$$
v(t)=\int_{0}^{t} s_{0}(\tau) h(t-\tau) d \tau=\left\{\begin{array}{ll}
\int_{0}^{t} A e^{-(t-\tau) / T} d \tau=A T\left(1-e^{-t / T}\right), & 0 \leq t \leq T \\
\int_{0}^{T} A e^{-(t-\tau) / T} d \tau=A T(e-1) e^{-t / T}, & T \leq t
\end{array}\right\}
$$

(b) A sketch of $v(t)$ is given in the following figure:

(c) $y(t)=v(t) \cos 2 \pi f_{c} t$, where $f_{c} \gg 1 / T$. Hence the maximum value of y corresponds to the maximum value of v, or $y_{\max }=y(T)=v_{\max }=v(T)=A T\left(1-e^{-1}\right)$.
(d) Working with lowpass equivalent signals, the noise term at the sampling instant will be :

$$
v_{N}(T)=\int_{0}^{T} z(\tau) h(T-\tau) d \tau
$$

The mean is : $E\left[v_{N}(T)\right]=\int_{0}^{T} E[z(\tau)] h(T-\tau) d \tau=0$, and the second moment :

$$
\begin{aligned}
E\left[\left|v_{N}(T)\right|^{2}\right] & =E\left[\int_{0}^{T} z(\tau) h(T-\tau) d \tau \int_{0}^{T} z^{*}(w) h(T-w) d w\right] \\
& =2 N_{0} \int_{0}^{T} h^{2}(T-\tau) d \tau \\
& =N_{0} T\left(1-e^{-2}\right)
\end{aligned}
$$

The variance of the real-valued noise component can be obtained using the relationship $\operatorname{Re}[N]=$ $\frac{1}{2}\left(N+N^{*}\right)$ to obtain : $\sigma_{N r}^{2}=\frac{1}{2} E\left[\left|v_{N}(T)\right|^{2}\right]=\frac{1}{2} N_{0} T\left(1-e^{-2}\right)$
(e) The SNR is defined as:

$$
\gamma=\frac{\left|v_{\max }\right|^{2}}{E\left[\left|v_{N}(T)\right|^{2}\right]}=\frac{A^{2} T}{N_{0}} \frac{e-1}{e+1}
$$

(the same result is obtained if we consider the real bandpass signal, when the energy term has the additional factor $1 / 2$ compared to the lowpass energy term, and the noise term is $\left.\sigma_{N r}^{2}=\frac{1}{2} E\left[\left|v_{N}(T)\right|^{2}\right]\right)$
(f) If we have a filter matched to $s_{0}(t)$, then the output of the noise-free matched filter will be :

$$
v_{\max }=v(T)=\int_{0}^{T} s_{o}^{2}(t)=A^{2} T
$$

and the noise term will have second moment :

$$
\begin{aligned}
E\left[\left|v_{N}(T)\right|^{2}\right] & =E\left[\int_{0}^{T} z(\tau) s_{0}(T-\tau) d \tau \int_{0}^{T} z^{*}(w) s_{0}(T-w) d w\right] \\
& =2 N_{0} \int_{0}^{T} s_{0}^{2}(T-\tau) d \tau \\
& =2 N_{0} A^{2} T
\end{aligned}
$$

giving an SNR of :

$$
\gamma=\frac{\left|v_{\max }\right|^{2}}{E\left[\left|v_{N}(T)\right|^{2}\right]}=\frac{A^{2} T}{2 N_{0}}
$$

Compared with the result we obtained in (e), using a sub-optimum filter, the loss in SNR is equal to : $\left(\frac{e-1}{e+1}\right)\left(\frac{1}{2}\right)^{-1}=0.925$ or approximately 0.35 dB

Problem 5.16 :

(a) Consider the QAM constellation of Fig. P5-16. Using the Pythagorean theorem we can find the radius of the inner circle as:

$$
a^{2}+a^{2}=A^{2} \Longrightarrow a=\frac{1}{\sqrt{2}} A
$$

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a triangle with a and A the two other sides and angle between then equal to $\theta=75^{\circ}$, we obtain:

$$
b^{2}=a^{2}+A^{2}-2 a A \cos 75^{\circ} \Longrightarrow b=\frac{1+\sqrt{3}}{2} A
$$

(b) If we denote by r the radius of the circle, then using the cosine theorem we obtain:

$$
A^{2}=r^{2}+r^{2}-2 r \cos 45^{\circ} \Longrightarrow r=\frac{A}{\sqrt{2-\sqrt{2}}}
$$

(c) The average transmitted power of the PSK constellation is:

$$
P_{\mathrm{PSK}}=8 \times \frac{1}{8} \times\left(\frac{A}{\sqrt{2-\sqrt{2}}}\right)^{2} \Longrightarrow P_{\mathrm{PSK}}=\frac{A^{2}}{2-\sqrt{2}}
$$

whereas the average transmitted power of the QAM constellation:

$$
P_{\mathrm{QAM}}=\frac{1}{8}\left(4 \frac{A^{2}}{2}+4 \frac{(1+\sqrt{3})^{2}}{4} A^{2}\right) \Longrightarrow P_{\mathrm{QAM}}=\left[\frac{2+(1+\sqrt{3})^{2}}{8}\right] A^{2}
$$

The relative power advantage of the PSK constellation over the QAM constellation is:

$$
\text { gain }=\frac{P_{\mathrm{PSK}}}{P_{\mathrm{QAM}}}=\frac{8}{\left(2+(1+\sqrt{3})^{2}\right)(2-\sqrt{2})}=1.5927 \mathrm{~dB}
$$

Problem 5.18:

For binary phase modulation, the error probability is

$$
P_{2}=Q\left[\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right]=Q\left[\sqrt{\frac{A^{2} T}{N_{0}}}\right]
$$

With $P_{2}=10^{-6}$ we find from tables that

$$
\sqrt{\frac{A^{2} T}{N_{0}}}=4.74 \Longrightarrow A^{2} T=44.9352 \times 10^{-10}
$$

If the data rate is 10 Kbps , then the bit interval is $T=10^{-4}$ and therefore, the signal amplitude is

$$
A=\sqrt{44.9352 \times 10^{-10} \times 10^{4}}=6.7034 \times 10^{-3}
$$

Similarly we find that when the rate is $10^{5} \mathrm{bps}$ and $10^{6} \mathrm{bps}$, the required amplitude of the signal is $A=2.12 \times 10^{-2}$ and $A=6.703 \times 10^{-2}$ respectively.

Problem 5.26:

(a) The number of bits per symbol is

$$
k=\frac{4800}{R}=\frac{4800}{2400}=2
$$

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary QAM system with $M=2^{k}$, is

$$
P_{M}=1-\left(1-2\left(1-\frac{1}{\sqrt{M}}\right) Q\left[\sqrt{\frac{3 k \mathcal{E}_{b}}{(M-1) N_{0}}}\right]\right)^{2}
$$

With $P_{M}=10^{-5}$ and $k=2$ we obtain

$$
Q\left[\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right]=5 \times 10^{-6} \Longrightarrow \frac{\mathcal{E}_{b}}{N_{0}}=9.7682
$$

(b) If the bit rate of transmission is 9600 bps , then

$$
k=\frac{9600}{2400}=4
$$

In this case a $16-\mathrm{QAM}$ constellation is used and the probability of error is

$$
P_{M}=1-\left(1-2\left(1-\frac{1}{4}\right) Q\left[\sqrt{\frac{3 \times 4 \times \mathcal{E}_{b}}{15 \times N_{0}}}\right]\right)^{2}
$$

Thus,

$$
Q\left[\sqrt{\frac{3 \times \mathcal{E}_{b}}{15 \times N_{0}}}\right]=\frac{1}{3} \times 10^{-5} \Longrightarrow \frac{\mathcal{E}_{b}}{N_{0}}=25.3688
$$

(c) If the bit rate of transmission is 19200 bps , then

$$
k=\frac{19200}{2400}=8
$$

In this case a $256-\mathrm{QAM}$ constellation is used and the probability of error is

$$
P_{M}=1-\left(1-2\left(1-\frac{1}{16}\right) Q\left[\sqrt{\frac{3 \times 8 \times \mathcal{E}_{b}}{255 \times N_{0}}}\right]\right)^{2}
$$

With $P_{M}=10^{-5}$ we obtain

$$
\frac{\mathcal{E}_{b}}{N_{0}}=659.8922
$$

(d) The following table gives the SNR per bit and the corresponding number of bits per symbol for the constellations used in parts a)-c).

k	2	4	8
SNR (db)	9.89	14.04	28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional bit per symbol.

Problem 5.28:

For 4-phase PSK $(M=4)$ we have the following realtionship between the symbol rate $1 / T$, the required bandwith W and the bit rate $R=k \cdot 1 / T=\frac{\log _{2} M}{T}$ (see 5-2-84):

$$
W=\frac{R}{\log _{2} M} \rightarrow R=W \log _{2} M=2 W=200 \mathrm{kbits} / \mathrm{sec}
$$

For binary FSK $(M=2)$ the required frequency separation is $1 / 2 T$ (assuming coherent receiver) and (see 5-2-86):

$$
W=\frac{M}{\log _{2} M} R \rightarrow R=\frac{2 W \log _{2} M}{M}=W=100 \mathrm{kbits} / \mathrm{sec}
$$

Finally, for 4 -frequency non-coherent FSK, the required frequency separation is $1 / T$, so the symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate is tha same as in binary FSK :

$$
R=W=100 \mathrm{kbits} / \mathrm{sec}
$$

