
Problem 5.12 :

The correlation of the two signals in binary FSK is:

ρ =
sin(2π∆fT )

2π∆fT

To find the minimum value of the correlation, we set the derivative of ρ with respect to ∆f
equal to zero. Thus:

ϑρ

ϑ∆f
= 0 =

cos(2π∆fT )2πT

2π∆fT
− sin(2π∆fT )

(2π∆fT )2
2πT

and therefore :
2π∆fT = tan(2π∆fT )

Solving numerically (or graphically) the equation x = tan(x), we obtain x = 4.4934. Thus,

2π∆fT = 4.4934 =⇒ ∆f =
0.7151

T

and the value of ρ is −0.2172.
We know that the probability of error can be expressed in terms of the distance d12 between the
signal points, as :

Pe = Q

√ d2
12

2N0


where the distance between the two signal points is :

d2
12 = 2Eb(1 − ρ)

and therefore :

Pe = Q

√2Eb(1 − ρ)
2N0

 = Q

[√
1.2172Eb
N0

]

Problem 5.13 :

(a) It is straightforward to see that :

Set I : Four − level PAM
Set II : Orthogonal
Set III : Biorthogonal



(b) The transmitted waveforms in the first set have energy : 1
2
A2 or 1

2
9A2. Hence for the first

set the average energy is :

E1 =
1

4

(
2
1

2
A2 + 2

1

2
9A2

)
= 2.5A2

All the waveforms in the second and third sets have the same energy : 1
2
A2.Hence :

E2 = E3 = A2/2

(c) The average probability of a symbol error for M-PAM is (5-2-45) :

P4,PAM =
2(M − 1)

M
Q

(√
6Eav

(M2 − 1)N0

)
=

3

2
Q

√A2

N0





(d) For coherent detection, a union bound can be given by (5-2-25) :

P4,orth < (M − 1)Q
(√

Es/N0

)
= 3Q

√ A2

2N0


while for non-coherent detection :

P4,orth,nc ≤ (M − 1)P2,nc = 3
1

2
e−Es/2N0 =

3

2
e−A 2/4N0 

(e) It is not possible to use non-coherent detection for a biorthogonal signal set : e.g. without
phase knowledge, we cannot distinguish between the signals u1(t) and u3(t) (or u2(t)/u4(t)).

(f) The bit rate to bandwidth ratio for M-PAM is given by (5-2-85) :(
R

W

)
1

= 2 log 2M = 2 log 24 = 4

For orthogonal signals we can use the expression given by (5-2-86) or notice that we use a symbol
interval 4 times larger than the one used in set I, resulting in a bit rate 4 times smaller :(

R

W

)
2

=
2 log 2M

M
= 1

Finally, the biorthogonal set has double the bandwidth efficiency of the orthogonal set :(
R

W

)
3

= 2

Hence, set I is the most bandwidth efficient (at the expense of larger average power), but set III
will also be satisfactory.
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Problem 5.14 :

The following graph shows the decision regions for the four signals :
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As we see, using the transformation W1 = U1 +U2, W2 = U1−U2 alters the decision regions to :
(W1 > 0,W2 > 0 → s1(t);W1 > 0,W2 < 0 → s2(t); etc.) . Assuming that s1(t) was transmitted,
the outputs of the matched filters will be :

U1 = 2E +N1r

U2 = N2r

where N1r, N2r are uncorrelated (Prob. 5.7) Gaussian-distributed terms with zero mean and
variance 2EN0. Then :

W1 = 2E + (N1r +N2r)
W2 = 2E + (N1r −N2r)

will be Gaussian distributed with means : E [W1] = E [W2] = 2E , and variances : E [W 2
1 ] =

E [W 2
2 ] = 4EN0. Since U1, U2 are independent, it is straightforward to prove that W1,W2 are

independent, too. Hence, the probability that a correct decision is made, assuming that s1(t)
was transmitted is :

Pc|s1 = P [W1 > 0]P [W2 > 0] = (P [W1 > 0])2

= (1 − P [W1 < 0])2 =
(
1 −Q

(
2E√
4EN0

))2

=
(
1 −Q

(√ E
N0

))2
=
(
1 −Q

(√
2Eb

N0

))2

where Eb = E/2 is the transmitted energy per bit. Then :

Pe|s1 = 1 − Pc|s1 = 1 −
(

1 −Q
(√

2Eb
N0

))2

= 2Q

(√
2Eb
N0

)[
1 − 1

2
Q

(√
2Eb
N0

)]



This is the exact symbol error probability for the 4-PSK signal, which is expected since the
vector space representations of the 4-biorthogonal and 4-PSK signals are identical.

Problem 5.15 :

(a) The output of the matched filter can be expressed as :

y(t) = Re
[
v(t)ej2πfct

]
where v(t) is the lowpass equivalent of the output :

v(t) =
∫ t

0
s0(τ)h(t− τ)dτ =

{ ∫ t
0 Ae

−(t−τ)/T dτ = AT
(
1 − e−t/T

)
, 0 ≤ t ≤ T∫ T

0 Ae
−(t−τ)/T dτ = AT (e− 1)e−t/T , T ≤ t

}

(b) A sketch of v(t) is given in the following figure :
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(c) y(t) = v(t) cos 2πfct, where fc >> 1/T. Hence the maximum value of y corresponds to the
maximum value of v, or ymax = y(T ) = vmax = v(T ) = AT (1 − e−1).

(d) Working with lowpass equivalent signals, the noise term at the sampling instant will be :

vN(T ) =
∫ T

0
z(τ)h(T − τ)dτ

The mean is : E [vN(T )] =
∫ T
0 E [z(τ)] h(T − τ)dτ = 0, and the second moment :

E
[
|vN(T )|2

]
= E

[∫ T
0 z(τ)h(T − τ)dτ ∫ T0 z∗(w)h(T − w)dw

]
= 2N0

∫ T
0 h

2(T − τ)dτ
= N0T (1 − e−2)



The variance of the real-valued noise component can be obtained using the relationship Re[N ] =
1
2
(N +N∗) to obtain : σ2

Nr = 1
2
E
[
|vN(T )|2

]
= 1

2
N0T (1 − e−2)

(e) The SNR is defined as :

γ =
|vmax|2

E
[
|vN(T )|2

] =
A2T

N0

e− 1

e+ 1

(the same result is obtained if we consider the real bandpass signal, when the energy term
has the additional factor 1/2 compared to the lowpass energy term, and the noise term is

σ2
Nr = 1

2
E
[
|vN(T )|2

]
)

(f) If we have a filter matched to s0(t), then the output of the noise-free matched filter will be :

vmax = v(T ) =
∫ T

0
s2o(t) = A2T

and the noise term will have second moment :

E
[
|vN(T )|2

]
= E

[∫ T
0 z(τ)s0(T − τ)dτ ∫ T0 z∗(w)s0(T − w)dw

]
= 2N0

∫ T
0 s

2
0(T − τ)dτ

= 2N0A
2T

giving an SNR of :

γ =
|vmax|2

E
[
|vN(T )|2

] =
A2T

2N0

Compared with the result we obtained in (e), using a sub-optimum filter, the loss in SNR is

equal to :
(
e−1
e+1

) (
1
2

)−1
= 0.925 or approximately 0.35 dB



Problem 5.16 :

(a) Consider the QAM constellation of Fig. P5-16. Using the Pythagorean theorem we can find
the radius of the inner circle as:

a2 + a2 = A2 =⇒ a =
1√
2
A

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to θ = 75o, we obtain:

b2 = a2 + A2 − 2aA cos 75o =⇒ b =
1 +

√
3

2
A



(b) If we denote by r the radius of the circle, then using the cosine theorem we obtain:

A2 = r2 + r2 − 2r cos 45o =⇒ r =
A√

2 −√
2

(c) The average transmitted power of the PSK constellation is:

PPSK = 8 × 1

8
×
 A√

2 −√
2

2

=⇒ PPSK =
A2

2 −√
2

whereas the average transmitted power of the QAM constellation:

PQAM =
1

8

(
4
A2

2
+ 4

(1 +
√

3)2

4
A2

)
=⇒ PQAM =

[
2 + (1 +

√
3)2

8

]
A2

The relative power advantage of the PSK constellation over the QAM constellation is:

gain =
PPSK
PQAM

=
8

(2 + (1 +
√

3)2)(2 −√
2)

= 1.5927 dB



Problem 5.18 :

For binary phase modulation, the error probability is

P2 = Q

[√
2Eb
N0

]
= Q

√A2T

N0


With P2 = 10−6 we find from tables that√

A2T

N0

= 4.74 =⇒ A2T = 44.9352 × 10−10

If the data rate is 10 Kbps, then the bit interval is T = 10−4 and therefore, the signal amplitude
is

A =
√

44.9352 × 10−10 × 104 = 6.7034 × 10−3

Similarly we find that when the rate is 105 bps and 106 bps, the required amplitude of the signal
is A = 2.12 × 10−2 and A = 6.703 × 10−2 respectively.



Problem 5.26 :

(a) The number of bits per symbol is

k =
4800

R
=

4800

2400
= 2

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary
QAM system with M = 2k, is

PM = 1 −
(

1 − 2

(
1 − 1√

M

)
Q

[√
3kEb

(M − 1)N0

])2

With PM = 10−5 and k = 2 we obtain

Q

[√
2Eb
N0

]
= 5 × 10−6 =⇒ Eb

N0
= 9.7682

(b) If the bit rate of transmission is 9600 bps, then

k =
9600

2400
= 4

In this case a 16-QAM constellation is used and the probability of error is

PM = 1 −
(

1 − 2
(
1 − 1

4

)
Q

[√
3 × 4 × Eb
15 ×N0

])2

Thus,

Q

[√
3 × Eb

15 ×N0

]
=

1

3
× 10−5 =⇒ Eb

N0
= 25.3688

(c) If the bit rate of transmission is 19200 bps, then

k =
19200

2400
= 8

In this case a 256-QAM constellation is used and the probability of error is

PM = 1 −
(

1 − 2
(
1 − 1

16

)
Q

[√
3 × 8 × Eb
255 ×N0

])2

With PM = 10−5 we obtain
Eb
N0

= 659.8922



(d) The following table gives the SNR per bit and the corresponding number of bits per symbol
for the constellations used in parts a)-c).

k 2 4 8
SNR (db) 9.89 14.04 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.



Problem 5.28 :

For 4-phase PSK (M = 4) we have the following realtionship between the symbol rate 1/T , the
required bandwith W and the bit rate R = k · 1/T = log2M

T
(see 5-2-84):

W =
R

log2M
→ R =Wlog2M = 2W = 200 kbits/sec

For binary FSK (M = 2) the required frequency separation is 1/2T (assuming coherent receiver)
and (see 5-2-86):

W =
M

log2M
R→ R =

2Wlog2M

M
=W = 100 kbits/sec

Finally, for 4-frequency non-coherent FSK, the required frequency separation is 1/T , so the
symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate
is tha same as in binary FSK :

R =W = 100 kbits/sec




