Problem 5.12 :

The correlation of the two signals in binary FSK is:

_ sin(2rAfT)
- 2rAfT

To find the minimum value of the correlation, we set the derivative of p with respect to Af
equal to zero. Thus:

Jp 0= cos(2rAfT)2aT  sin(2rAfT)

IAS 27 AST N

and therefore :
2nAfT = tan(2nAfT)

Solving numerically (or graphically) the equation z = tan(z), we obtain « = 4.4934. Thus,

0.7151
T

ITAST = 4.4934 = Af =

and the value of p is —0.2172.
We know that the probability of error can be expressed in terms of the distance d;5 between the

signal points, as :
di
P, = —=
@ 2N
where the distance between the two signal points is :
diy = 2&(1 — p)
and therefore :

Pe:Q[ M]:Ql Lﬂé},]
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Problem 5.13 :

(a) It is straightforward to see that :

Set I : Four — level PAM
Set IT : Orthogonal
Set III : Biorthogonal



(b) The transmitted waveforms in the first set have energy : A% or 2942, Hence for the first
set the average energy is :

N Y Lo\ _ 2
& =1 (22,4 +2:94 ) — 254
All the waveforms in the second and third sets have the same energy : %A?Hence :
Ey=E3=A%)2

(c) The average probability of a symbol error for M-PAM is (5-2-45) :

(M -1) 6Eav 3 A?
Pypan = Y Q( (M2—1)N0> —QQ( No)




(d) For coherent detection, a union bound can be given by (5-2-25) :

Pyopin < (M —1)Q (M) =30Q ( QA—]\Z)

while for non-coherent detection :

1 3
P47orth7nc < (M — 1) P27nc = 356—55/2N0 _ §€_A2/4NO

(e) It is not possible to use non-coherent detection for a biorthogonal signal set : e.g. without
phase knowledge, we cannot distinguish between the signals () and ug(t) (or us(t)/u4(t)).
(f) The bit rate to bandwidth ratio for M-PAM is given by (5-2-85) :

R
(W)1 =2logoM = 2log.4 =4

For orthogonal signals we can use the expression given by (5-2-86) or notice that we use a symbol
interval 4 times larger than the one used in set I, resulting in a bit rate 4 times smaller :

(E)_QloggM_
W/, M

Finally, the biorthogonal set has double the bandwidth efficiency of the orthogonal set :

R
(),
W/s
Hence, set I is the most bandwidth efficient (at the expense of larger average power), but set 111
will also be satisfactory.
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Problem 5.14 :

The following graph shows the decision regions for the four signals :

LU A=Ul> +|U2| R
B=Ul<—|U2|
C=U2>+|U1| C A
D=U2< —|Ul|
U, W

Y
Y

x

As we see, using the transformation W, = Uy 4+ Uy, Wy = Uy — U, alters the decision regions to :
(W1 >0,Wy >0 — s1(t); W7 > 0,5 <0 — s5(t); etc.). Assuming that s;(¢) was transmitted,
the outputs of the matched filters will be :

U1 - 28 + Nlr
U2 = N2r

where Ny, Ny, are uncorrelated (Prob. 5.7) Gaussian-distributed terms with zero mean and
variance 2E Ny. Then :

Wy = 2E + (N, + Na,)

Wy = 2E + (N1, — Nay)

will be Gaussian distributed with means : E [W;] = E [W,] = 2€, and variances : E [W}] =
E [W2] = 4ENy. Since Uy, U, are independent, it is straightforward to prove that Wi, W are
independent, too. Hence, the probability that a correct decision is made, assuming that s (t)
was transmitted is :

Py = P[Wy>0]P[Wy>0]=(P[W, >0

= (1-PW <0)’=(1 _Q(\/E—No))2

= (1-e(yR) =(-e(/R)

where & = £/2 is the transmitted energy per bit. Then :

Py =1— Py =1— (1 -Q (\/%))2 - 2Q< %) ll -39 (%)]




This is the exact symbol error probability for the 4-PSK signal, which is expected since the
vector space representations of the 4-biorthogonal and 4-PSK signals are identical.

Problem 5.15 :

(a) The output of the matched filter can be expressed as :
y(t) = Re {v(t)ejz’rfct}
where v(t) is the lowpass equivalent of the output :

Jo Aem DT dr = AT (1—e7¥T), 0<t<T }

t
0= [ so(m)h(t = r)dr =
v(t) 5 so(T)h(t — T)dr { [T Ae==DITdr — AT(e — 1)e /T, T <1

(b) A sketch of v(t) is given in the following figure :

v(t)

(c) y(t) = v(t) cos 2m f.t, where f. >> 1/T. Hence the maximum value of y corresponds to the
maximum value of v, or Ymayx = Y(T) = Vmax = v(T) = AT(1 — e 1).

(d) Working with lowpass equivalent signals, the noise term at the sampling instant will be :
on(T) = [ " AT — 7)dr
The mean is : E [oy(T)] = fy E[2(7)] (T — 7)dr = 0, and the second moment :
B[lox(TF] = B[ s(r)h(T = r)dr f 2 (w)h(T ~ w)du]

= 2N, [T h3(T — 7)dr
= N[)T (1 — 672)



The variance of the real-valued noise component can be obtained using the relationship Re[N| =
L (N + N*) to obtain : 0%, = 1E [Jun(T)*] = INoT (1 - e7?)

(e) The SNR is defined as :

o vma” ATe—1
EUUN(T)ﬂ Ny e+1

(the same result is obtained if we consider the real bandpass signal, when the energy term
has the additional factor 1/2 compared to the lowpass energy term, and the noise term is

ok, = 3E [ (D))

(f) If we have a filter matched to sq¢(t), then the output of the noise-free matched filter will be :

T
VUmax = 0(T') = / s2(t) = A*T
0
and the noise term will have second moment :

Ellox(T)] = E g 2()so(T = 7)dr [§ 2*(w)so(T — w)dw]
2Ny fOT si(T — 7)dr
= 2N AT

giving an SNR of :
|VUmax]” AT

E[lon(M)F] 2N

Compared with the result we obtained in (e), using a sub-optimum filter, the loss in SNR is

e-1) (1)} :
equal to : (m) (5) = 0.925 or approximately 0.35 dB



Problem 5.16 :

(a) Consider the QAM constellation of Fig. P5-16. Using the Pythagorean theorem we can find
the radius of the inner circle as:

1
2, 2 2
a“+a" =A"=a=—7A
V2

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to § = 75°, we obtain:
143

2

W =a?+ A% — 2aAcosTh’ = b = A




(b) If we denote by r the radius of the circle, then using the cosine theorem we obtain:
A
2-V2

A? =72 4+ 7r% — 2rcosds’ = r =

(c) The average transmitted power of the PSK constellation is:

2
1 A A?
PSK S ( 2_\/§> PSK 22

whereas the average transmitted power of the QAM constellation:

1(A2 (1++/3)? 24 (14 /3)?

PoAM = 3 47+4TA2>:>PQAM_[ 3

|
The relative power advantage of the PSK constellation over the QAM constellation is:

. PPSK 8
aln = = =1.5927 dB
ST PoaM 2+ 1+ V32— VR




Problem 5.18 :
For binary phase modulation, the error probability is
2&,
P = _ =
- a|%] -
With P, = 107% we find from tables that

[A2T
~ 4.74 = A?T = 44.9352 x 1071°
0

If the data rate is 10 Kbps, then the bit interval is 7' = 10~* and therefore, the signal amplitude
is

A = v44.9352 x 10-10 x 10% = 6.7034 x 1073

Similarly we find that when the rate is 10° bps and 10° bps, the required amplitude of the signal
is A =212 x 1072 and A = 6.703 x 1072 respectively.



Problem 5.26 :

(a) The number of bits per symbol is

4800 4800

K R 2400

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary
QAM system with M = 2%, is

o= (=21 ) e o))

With Py, = 107° and k& = 2 we obtain

— | =5x10 — = 9.7682
@ l NO] TN,
(b) If the bit rate of transmission is 9600 bps, then

9600
2400

In this case a 16-QAM constellation is used and the probability of error is

2
1 3x4x&E
PM_1_<1_2(1_Z>Q[\/ 15><N0D
3x& 1 e &
N =-x1 =2 — 95,
Ql 15xN0] 3 X 0 :>N0 5.3688

(c) If the bit rate of transmission is 19200 bps, then

Thus,

19200
2400

In this case a 256-QAM constellation is used and the probability of error is

1 3X X E ?
PM_1_<1_2<1_E>Q“ 255><N0D

With Py; = 107> we obtain P
b
— = .8922
N, 659.89



(d) The following table gives the SNR per bit and the corresponding number of bits per symbol
for the constellations used in parts a)-c).

k 2 1 8
SNR (db) | 9.89 | 14.04 | 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.



Problem 5.28 :

For 4-phase PSK (M = 4) we have the following realtionship between the symbol rate 1/7', the
required bandwith W and the bit rate R = k- 1/T = ©°2M (sce 5-2-84):

= — R = Wlogo M = 2W = 200 kbits/sec
loggM

For binary FSK (M = 2) the required frequency separation is 1/27" (assuming coherent receiver)
and (see 5-2-86):

R R 2WlogsM

W p—
logg M M

= W = 100 kbits/sec

Finally, for 4-frequency non-coherent FSK, the required frequency separation is 1/7, so the
symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate
is tha same as in binary FSK :

R =W =100 kbits/sec





