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    HW 6 Solutions

1. Consider the following detection problem:

r(t) = sm(t) + n(t) 0 � t � T

for m = 1; 2; : : : ; 8, where

sm(t) =
q
2E=T sin

�
t+m

�

4

�

with E being the symbol energy.

This signal set is known as 8-PSK. Assume the 8 signals are equally likely, andn(t) is AWGN with PSDN0=2
watts/Hz.

(a) Choose a suitable orthonormal set for the signal space. Plot the signal constellation. What is the dimension-
ality of this space?

(b) Compute the distances (as a function ofE) between an arbitrary signal point in the constellation, and the
seven other points.

(c) Indicate the optimum decision regions on your signal constellation plot.

(d) Use the results from parts (b) and (c) to compute a union bound as an upper bound on the probability of
symbol error.

(a) Dimensionality of this space is 2:

f1(t) =

r
2

T
sin(t+ �=4) f2(t) =

r
2

T
cos(t+ �=4) 0 � t � T

The constellation consists of 8 points around a circle of radius
p
E:

s1(t) = (
p
E; 0) (along the positivef1 axis) s2(t) = (

p
E=2;

p
E=2)

s3(t) = (0;
p
E) (along the positivef2 axis) s4(t) = (�pE=2;

p
E=2)

s5(t) = (�pE; 0) (along the negativef1 axis) s6(t) = (�pE=2;�pE=2)

s7(t) = (0;�pE) (along the negativef2 axis) s8(t) = (
p
E=2;�pE=2)

(b)

d212 = E=2 + (
p
E �pE=2)2 or d12 = d18 = [2E(1 � 1=

p
2)]1=2

d13 = d17 =
p
2E

d15 = 2
p
E

d14 = d16 = [2E(1 + 1=
p
2)]1=2

(c) The decision regions are45Æ pie-shaped regions, bordered on either side by radial lines from the constellation
origin that bisect the arc between adjacent signal pairs.

(d)

P (error) � 2Q
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Problem 5.38 :

(a) The optimal ML detector (see 5-1-41) selects the sequence Ci that minimizes the quantity:

D(r, Ci) =
n∑
k=1

(rk −
√
EbCik)2

The metrics of the two possible transmitted sequences are

D(r, C1) =
w∑
k=1

(rk −
√
Eb)2 +

n∑
k=w+1

(rk −
√
Eb)2

and

D(r, C2) =
w∑
k=1

(rk −
√
Eb)2 +

n∑
k=w+1

(rk +
√
Eb)2

Since the first term of the right side is common for the two equations, we conclude that the
optimal ML detector can base its decisions only on the last n−w received elements of r. That
is

n∑
k=w+1

(rk −
√
Eb)2 −

n∑
k=w+1

(rk +
√
Eb)2

C2

>
<

C1

0

or equivalently

n∑
k=w+1

rk

C1

>
<

C2

0

(b) Since rk =
√EbCik + nk, the probability of error P (e|C1) is

P (e|C1) = P

√Eb(n− w) +
n∑

k=w+1

nk < 0


= P

 n∑
k=w+1

nk < −(n− w)
√
Eb


The random variable u =
∑n
k=w+1 nk is zero-mean Gaussian with variance σ2

u = (n − w)σ2.
Hence

P (e|C1) =
1√

2π(n− w)σ2

∫ −√Eb(n−w)

−∞
exp(− x2

2π(n− w)σ2
)dx = Q

√Eb(n− w)

σ2





Similarly we find that P (e|C2) = P (e|C1) and since the two sequences are equiprobable

P (e) = Q

√Eb(n− w)

σ2



(c) The probability of error P (e) is minimized when Eb(n−w)
σ2 is maximized, that is for w = 0.

This implies that C1 = −C2 and thus the distance between the two sequences is the maximum
possible.



Problem 5.42 :

(a) The noncoherent envelope detector for the on-off keying signal is depicted in the next figure.
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(b) If s0(t) is sent, then the received signal is r(t) = n(t) and therefore the sampled outputs rc,
rs are zero-mean independent Gaussian random variables with variance N0

2
. Hence, the random

variable r =
√
r2c + r2s is Rayleigh distributed and the PDF is given by :

p(r|s0(t)) =
r

σ2
e−

r2

2σ2 =
2r

N0

e
− r2

N0



If s1(t) is transmitted, then the received signal is :

r(t) =

√
2Eb
Tb

cos(2πfct+ φ) + n(t)

Crosscorrelating r(t) by
√

2
T

cos(2πfct) and sampling the output at t = T , results in

rc =
∫ T

0
r(t)

√
2

T
cos(2πfct)dt

=
∫ T

0

2
√Eb
Tb

cos(2πfct+ φ) cos(2πfct)dt+
∫ T

0
n(t)

√
2

T
cos(2πfct)dt

=
2
√Eb
Tb

∫ T

0

1

2
(cos(2π2fct+ φ) + cos(φ)) dt+ nc

=
√
Eb cos(φ) + nc

where nc is zero-mean Gaussian random variable with variance N0

2
. Similarly, for the quadrature

component we have :

rs =
√
Eb sin(φ) + ns

The PDF of the random variable r =
√
r2c + r2s =

√
Eb + n2

c + n2
s follows the Rician distibution :

p(r|s1(t)) =
r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
=

2r

N0
e
− r2+Eb

N0 I0

(
2r
√Eb
N0

)

(c) For equiprobable signals the probability of error is given by:

P (error) =
1

2

∫ VT

−∞
p(r|s1(t))dr +

1

2

∫ ∞

VT

p(r|s0(t))dr

Since r > 0 the expression for the probability of error takes the form

P (error) =
1

2

∫ VT

0
p(r|s1(t))dr +

1

2

∫ ∞

VT

p(r|s0(t))dr

=
1

2

∫ VT

0

r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
dr +

1

2

∫ ∞

VT

r

σ2
e−

r2

2σ2 dr

The optimum threshold level is the value of VT that minimizes the probability of error. However,
when Eb

N0
� 1 the optimum value is close to:

√Eb

2
and we will use this threshold to simplify the

analysis. The integral involving the Bessel function cannot be evaluated in closed form. Instead
of I0(x) we will use the approximation :

I0(x) ≈ ex√
2πx



which is valid for large x, that is for high SNR. In this case :

1

2

∫ VT

0

r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
dr ≈ 1

2

∫ √Eb
2

0

√
r

2πσ2
√Eb e

−(r−√Eb)
2/2σ2

dr

This integral is further simplified if we observe that for high SNR, the integrand is dominant in
the vicinity of

√Eb and therefore, the lower limit can be substituted by −∞. Also√
r

2πσ2
√Eb ≈

√
1

2πσ2

and therefore :

1

2

∫ √Eb
2

0

√
r

2πσ2
√Eb e

−(r−√Eb)
2/2σ2

dr ≈ 1

2

∫ √Eb
2

−∞

√
1

2πσ2
e−(r−√Eb)

2/2σ2

dr

=
1

2
Q

[√ Eb
2N0

]

Finally :

P (error) =
1

2
Q

[√ Eb
2N0

]
+

1

2

∫ ∞
√Eb

2

2r

N0
e
− r2

N0 dr

≤ 1

2
Q

[√ Eb
2N0

]
+

1

2
e
− Eb

4N0




