
Problem 4.15:

We have that Φuu(f) =
1
T
|G(f)|2Φii(f) But E(In) = 0, E

(
|In|2

)
= 1, hence : φii (m) ={

1, m = 0
0, m 
= 0

}
. Therefore : Φii(f) = 1⇒ Φuu(f) =

1
T
|G(f)|2 .

(a) For the rectangular pulse :

G(f) = AT
sin πfT

πfT
e−j2πfT/2 ⇒ |G(f)|2 = A2T 2 sin

2πfT

(πfT )2

where the factor e−j2πfT/2 is due to the T/2 shift of the rectangular pulse from the center t = 0.
Hence :

Φuu(f) = A2T
sin 2πfT

(πfT )2
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(b) For the sinusoidal pulse : G(f) =
∫ T
0 sin πt

T
exp(−j2πft)dt. By using the trigonometric

identity sin x = exp(jx)−exp(−jx)
2j

it is easily shown that :

G(f) =
2AT

π

cosπTf

1− 4T 2f 2
e−j2πfT/2 ⇒ |G(f)|2 =

(
2AT

π

)2 cos 2πTf

(1− 4T 2f 2)2

Hence :

Φuu(f) =
(
2A

π

)2

T
cos 2πTf

(1− 4T 2f 2)2
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(c) The 3-db frequency for (a) is :

sin 2πf3dbT

(πf3dbT )
2 =

1

2
⇒ f3db =

0.44

T

(where this solution is obtained graphically), while the 3-db frequency for the sinusoidal pulse
on (b) is :

cos 2πTf

(1− 4T 2f 2)2
=
1

2
⇒ f3db =

0.59

T

The rectangular pulse spectrum has the first spectral null at f = 1/T, whereas the spectrum
of the sinusoidal pulse has the first null at f = 3/2T = 1.5/T. Clearly the spectrum for the
rectangular pulse has a narrower main lobe. However, it has higher sidelobes.



Problem 4.20 :

The autocorrelation function for u∆(t) is :

φu∆u∆
(t) = 1

2
E [u∆(t+ τ)u∗∆(t)]

= 1
2

∑∞
n=−∞

∑∞
m=−∞E (ImI

∗
n)E [u(t+ τ −mT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
n=−∞

∑∞
m=−∞ φii(m− n)E [u(t+ τ −mT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
m=−∞ φii(m)

∑∞
n=−∞E [u(t+ τ −mT − nT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
m=−∞ φii(m)

∑∞
n=−∞

∫ T
0

1
T
u(t+ τ −mT − nT −∆)u∗(t− nT −∆)d∆

Let a = ∆+ nT, da = d∆, and a ∈ (−∞,∞). Then :

φu∆u∆
(t) = 1

2

∑∞
m=−∞ φii(m)

∑∞
n=−∞

∫ (n+1)T
nT

1
T
u(t+ τ −mT − a)u∗(t− a)da

= 1
2

∑∞
m=−∞ φii(m)

1
T

∫∞
−∞ u(t+ τ −mT − a)u∗(t− a)da

= 1
T

∑∞
m=−∞ φii(m)φuu(τ −mT )

Thus we have obtained the same autocorrelation function as given by (4.4.11). Consequently
the power spectral density of u∆(t) is the same as the one given by (4.4.12) :

Φu∆u∆
(f) =

1

T
|G(f)|2Φii(f)



Problem 4.21 :

(a) Bn = In + In−1. Hence :
In In−1 Bn

1 1 2
1 −1 0

−1 1 0
−1 −1 −2

The signal space representation is given in the following figure, with P (Bn = 2) = P (Bn =
−2) = 1/4, P (Bn = 0) = 1/2.
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(b)
φBB(m) = E [Bn+mBn] = E [(In+m + In+m−1) (In + In−1)]

= φii(m) + φii(m− 1) + φii(m+ 1)

Since the sequence {In} consists of independent symbols :

φii(m) =

{
E [In+m]E [In] = 0 · 0 = 0, m 
= 0

E [I2
n] = 1, m = 0

}

Hence :

φBB(m) =



2, m = 0
1, m = ±1
0, o.w




and

ΦBB(f) =
∑∞

m=−∞ φBB(m) exp(−j2πfmT ) = 2 + exp(j2πfT ) + exp(−j2πfT )
= 2 [1 + cos 2πfT ] = 4 cos 2πfT

A plot of the power spectral density ΦB(f) is given in the following figure :
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(c) The transition matrix is :

In−1 In Bn In+1 Bn+1

−1 −1 −2 −1 −2
−1 −1 −2 1 0
−1 1 0 −1 0
−1 1 0 1 2
1 −1 0 −1 −2
1 −1 0 1 0
1 1 2 −1 0
1 1 2 1 2

The corresponding Markov chain model is illustrated in the following figure :
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Problem 4.22 :

(a) In = an−an−2,with the sequence {an} being uncorrelated random variables (i.eE (an+man) =
δ(m)). Hence :

φii(m) = E [In+mIn] = E [(an+m − an+m−2) (an − an−2)]
= 2δ(m)− δ(m− 2)− δ(m+ 2)

=




2, m = 0
−1, m = ±2
0, o.w.




(b) Φuu(f) =
1
T
|G(f)|2Φii(f) where :

Φii(f) =
∑∞

m=−∞ φii(m) exp(−j2πfmT ) = 2− exp(j4πfT )− exp(−j4πfT )
= 2 [1− cos 4πfT ] = 4 sin 22πfT

and

|G(f)|2 = (AT )2
(
sin πfT

πfT

)2



Therefore :

Φuu(f) = 4A2T

(
sin πfT

πfT

)2

sin 22πfT

(c) If {an} takes the values (0,1) with equal probability then E(an) = 1/2 and E(an+man) ={
1/4, m 
= 0
1/2, m = 0

}
= [1 + δ(m)] /4. Then :

φii(m) = E [In+mIn] = 2φaa(0)− φaa(2)− φaa(−2)
= 1

4
[2δ(m)− δ(m− 2)− δ(m+ 2)]

and
Φii(f) =

∑∞
m=−∞ φii(m) exp(−j2πfmT ) = sin 22πfT

Φuu(f) = A2T
(

sinπfT
πfT

)2
sin 22πfT

Thus, we obtain the same result as in (b) , but the magnitude of the various quantities is reduced
by a factor of 4 .

ˆ



Problem 4.23 :

x(t) = Re [u(t) exp (j2πfct)] where u(t) = s(t)± jŝ(t). Hence :

U(f) = S(f)± jŜ(f) where Ŝ(f) =

{ −jS(f), f > 0
jS(f), f < 0

}

So :

U(f) =

{
S(f)± S(f), f > 0
S(f)∓ S(f), f < 0

}
=

{
2S(f) or 0, f > 0
0 or 2S(f), f < 0

}

Since the lowpass equivalent of x(t) is single-sideband, we conclude that x(t) is a single-sideband
signal, too. Suppose, for example, that s(t) has the following spectrum. Then, the spectra of
the signals u(t) (shown in the figure for the case u(t) = s(t)+jŝ(t)) and x(t) are single-sideband
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Problem 4.30 :

The 16-QAM signal is represented as s(t) = In cos 2πft+Qn sin 2πft, where In = {±1,±3} , Qn =
{±1,±3} . A superposition of two 4-QAM (4-PSK) signals is :

s(t) = G [An cos 2πft+Bn sin 2πft] + Cn cos 2πft+ Cn sin 2πft

where An, Bn,Cn, Dn = {±1} . Clearly : In = GAn+Cn, Qn = GBn+Dn. From these equations
it is easy to see that G = 2 gives the requires equivalence.




