Problem 4.15:
We have that ®,,(f) = %\G(f)|2<1>ii(f) But E(I,,) = 0, E(\In|2) = 1, hence : ¢;(m) =

{ (1]: Z;L ;8 } Therefore : ®;(f) =1 = Puu(f) = 7 G2,

(a) For the rectangular pulse :
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T2 sin 7 fT
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where the factor e=727/7/2 is due to the 7'/2 shift of the rectangular pulse from the center ¢ = 0.
Hence :

G(f) = AT e TR = |G(f))? = A
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(b) For the sinusoidal pulse : G(f) = [ sin ZX exp(—j2w ft)dt. By using the trigonometric

identity sinz = SRUL=XB(=2) it ig easily shown that :

25
_ 2AT cosTTf  jorirpe 5 (2AT)2 cos *rT f

Hence :

Pu(f) = (

™

%>2T cos*nTf
(1—412f2)°



0.45

0.4+
0.35+
0.3
0.25¢

Sv(f)

0.2+
0.15¢
0.1+
0.05+

(c) The 3-db frequency for (a) is :

sin 27 T 1 0.44
4%2 =5 = faw=—"7
(7 faanT') 2

T
(where this solution is obtained graphically), while the 3-db frequency for the sinusoidal pulse
on (b) is :
cos*nTf 1 0.59
_— = — :> = —
(1 _ 4T2f2)2 9 f3db T
The rectangular pulse spectrum has the first spectral null at f = 1/7, whereas the spectrum
of the sinusoidal pulse has the first null at f = 3/2T = 1.5/T. Clearly the spectrum for the
rectangular pulse has a narrower main lobe. However, it has higher sidelobes.



Problem 4.20 :

The autocorrelation function for ua(t) is :
Gusus(t) = 3B [ua(t +7)ui(t)]

= I S CE(ILI) Eu(t 4T —mT — At (t —nT — A)]

= 1y 3% du(m—n)Eu(t+71—mT — Au(t —nT — A)]

= Iy u(m) S Efu(t+71—mT —nT — At —nT — A)]

= 1y hu(m) e o fy Au(t+7 —mT —nT — A)u*(t —nT — A)dA
Let a = A+nT, da=dA, and a € (—00,00). Then :

unua(t) = 330 dulm) o [TV Lu(t + 7 —mT — a)u(t — a)da
= 1y dulm)g [Zou(t+ 7 —mT — a)u*(t — a)da

= % E%o:—oo ¢n(m)¢uu (T - mT)

Thus we have obtained the same autocorrelation function as given by (4.4.11). Consequently
the power spectral density of ua(t) is the same as the one given by (4.4.12) :

Busua(f) = 7 [GU) @il f)



Problem 4.21 :

(a) B, = I, + I,,—1. Hence :

]n In—l Bn
1 1 2
1 -1 0
—1 1 0
-1 -1 =2

The signal space representation is given in the following figure, with P(B, = 2) = P(B, =
—-2)=1/4, P(B,=0)=1/2.
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(b)
¢BB(m> = F [Bn—l—mBn] =L [(In—l—m + In—l—m—l) (In + In—l)]
= ¢iu(m) + ¢u(m — 1) + du(m + 1)
Since the sequence {I,,} consists of independent symbols :

EllLiw E[l,)=0-0=0, m#0
Guilm) = { B2 =1, m=0 }
Hence :
2, m=0
ngBB(m) = { 1, m= =1 }
0, 0O.W
and

Ppp(f) = Xp——o ®Bp(m)exp(—j2rfmT) =2+ exp(j2m fT) + exp(—j2n fT)
= 2[1+cos2nfT] = 4cos?nfT

A plot of the power spectral density ®p(f) is given in the following figure :
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(c) The transition matrix is :

-1 1 O 1 2
1 -1 0 -1 -2
1 -1 0 1 0
1 1 2 -1 0
1 1 2 1 2

The corresponding Markov chain model is illustrated in the following figure :
1/2
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Problem 4.22 :

(a) I, = a,—a,_o, with the sequence {a, } being uncorrelated random variables (i.e £ (ap4man) =
d(m)). Hence :

bii(m) = ElLiymln] = E{(anim — Gnym—2) (an — n_2)]
= 26(m)—0(m—2)—=d(m+2)

2, m=0
= -1, m=+2
0, 0.W.

(b) ®uu(f) = 7 |G(/)* ®is(f) where :

C,u(f) = S0 du(m)exp(—j2rfmT) =2 — exp(jadn fT) — exp(—jdn fT)
= 2[1 —cosdr fT] = 4sin?2r fT

and

sinw fT 2
wfT )

()P = (ATY? (



Therefore :

. 2
By (f) = 4A2T (%) sin 227 fT

(c) If {a,} takes the values (0,1) with equal probability then E(a,) = 1/2 and E(ap1man) =

{ 1721: Eig } = [1 4+ d(m)] /4. Then :

¢zz(m> = F [In-l-mln] - 2¢aa(0> - ¢aa(2) - ¢aa(_2)
= 1[28(m) — 6(m — 2) — 3(m + 2)]

d
o Oui(f) =300 ¢i(m) exp(—j2n fmT) = sin 227 fT
Do(f) = AT (250) sin 22m f T

wfT

Thus, we obtain the same result as in (b) , but the magnitude of the various quantities is reduced
by a factor of 4 .



Problem 4.23 :
x(t) = Re [u(t) exp (j27 f.t)] where u(t) = s(t) £+ 75(¢). Hence :

U(f) = S(f)£55(f) wmm&ﬁz{_ﬁﬁkﬁig}

S ESW), f>0 1 [ 25(f)or0, f>0
U“”‘{wﬁxsuxf<o}—{0maaﬂ,f<o}

Since the lowpass equivalent of x(t) is single-sideband, we conclude that x(¢) is a single-sideband
signal, too. Suppose, for example, that s(¢) has the following spectrum. Then, the spectra of
the signals u(¢) (shown in the figure for the case u(t) = s(t)+75(t)) and z(t) are single-sideband



fe+ Bee



Problem 4.30 :
The 16-QAM signal is represented as s(t) = I,, cos 2w ft+Q),, sin 27 ft, where [, = {£1,£3}, @, =
{£1,£3}. A superposition of two 4-QAM (4-PSK) signals is :

s(t) = G [A,, cos 2w ft + By, sin 27 ft] + C,, cos 27 ft + C,, sin 27 ft

where A, B, Cy, D,, = {£1}. Clearly : I, = GA,+C,, Q, = GB,+ D,. From these equations
it is easy to see that G = 2 gives the requires equivalence.





