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Examples (cont.)

Supposetwo events Al W,B1 W are not mutually exclusive:

ACB!f
Then

Pr(AE B) = Pr(A) + Pr(B)- Pr(AC B)

proof: mutually exclusive

AEB=AE ACB B=ACBE ACB
Pr(AE AB)=Pr(A)+Pr(AC B) Pr(B)=Pr(AC B)+Pr(AC B)

b Pr(AE B)=Pr(A)+Pr(B)- Pr(ACB) 1
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Examples (cont.)

if Al W then A isthe event corresponding to
“A did not occur”, and

Pr(A)=1- Pr(A)

ex) 1roll of afair die

if A={roll iseven} then A ={roll isodd}

Jd

Jd

_ d
Pr(A)=1-Pr(A)=0.5 ]
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Examples (cont.)

ex) A fair coin istossed 3 times in succession.

Events. A- get atotal of 2 heads
B- get a head on second toss

W={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A: X X X
B: X X X X

4
I

I

Pr(A) =3/8 Pr(B)=4/8 Pr(ACB)=2/8 "
-

Pr(AE B)=3/8+4/8- 2/8=5/8 1
I
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Conditional Probability

Pr(AC B)

AR (e

ex) A fair coin istossed 3 timesin succession.

Events. A- get atotal of 2 heads
B- get a head on second toss

I

W={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} :
A: X X X J
B: X X X X Jd
J

.

Pr(B) = 4/8, Pr(AC B) = 2/8, Pr(A | B) = (2/8) / (4/8) = 1/2
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Examples (cont.)

ex) A fair dieisthrown once:

ITW={1,2,3,4,5, 6
*A-roll a“2”
*B- roll iseven
Pr(A) = 1/6 Pr(B)=3/6 Pr(ACB)=Pr(A)=1/6

P(A | B) = (1/6)/(3/6) = 1/3

note Pr(A | A) =1, and if A and B are independent events:

J
a
J
Pr(AB) =Pr(A) :
J
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Hidden Markov Models (HMM's)

example 1)
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Example of an HMM

= The a; are state transition probabilities, give the
probability of moving from statei to state].

= Note that: éaﬂ —1
J

m At state Q,, one of 3 output symbols, R, B, or Yis
generated with probabilities b (R),b (B), or b (Y)

Sae Q |b(R) b(B) b(Y)

J

J

03 02 05 4
0.7 02 01 J
J

J
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0

1

2 09 O 0.1
3 02 08 0
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Example of an HMM (cont.)

One output symbol is generated per state (like aMoore
state machine).

possibleoutput sequence. R, Y, B, B, R, Y, R ..
state: Qg, Qq, Qs, Qp, Q1 Q1, Qs ..

Often the observed output symbols bear no obvious
relationship to the state sequence (i.e. states are “hidden™).

Knowing the state sequence generally provides more y
useful information about the characteristics of the signal J
being analyzed than the observed output symbols (aswas &
the case with syntactic recognition). d
d
d
d
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thereare T observationtimes: t =0, ..., T-1
there are N states: Q,,..., Qn.g
there are M observation symbols: v, ..., Vj.1
state transition probabilities:

a, =Pr(Q atimet+1| Q attimet)
symbol probabilities:

b, (k) = Pr(v, attimet | Q, at timet)
Initial state probabilities:

pfﬂﬂQaizm

Definition of Hidden Markov Models

aalaa4a
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Definition of Hidden Markov Models (cont.)

m Definethe matrices A, B, and P:
{A}, =9, i,j=0,..,N-1

1]

{B}, =by(k), j=0,...,N-1 k=0,..,M-1
{P} =p,, i=0,...,N-1
notation for HMM: | = (A, B, P)

m Notation for observation sequence; O =0,;,0,,...,0r;
= Notation for state sequence: | = ig, Iy, ..., I14

aalaa4a
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Three Fundamental Problems

m Problem 1: Given the observation sequence O = O,,0,,...,0; ,
and themodd | = (A, B, P), how do we compute the
probability of the observation sequence, Pr(O |1 )?

= Problem 2: Given the observation sequenceO =Q,,0,,...,0; ;
and themodd | = (A, B, P), how do we estimate the state
sequence, | = i, 4, ..., I, Which produced the

observations? d

m Problem 3: How do we adjust the model parameters| = :
(A, B, P) tomaximize Pr(O |1 )? F

d

d
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Relevance to Normal/Abnormal ECG Rhythm Detection

Suppose we have one HMM that models normal rhythm,
and a second HMM that models abnormal rhythm, and we
have a measured observation sequence. Problem 1 can be
used to determine which isthe most likely model for the
measured observations, hence, we can classify the rhythm
as normal or abnormal.

Suppose we have a single model which enables usto

associate certain states with with the components of the -
ECG (P, QORS, and T waves). Problem 2 can be used to :
estimate the states from the observation sequence. The "
state sequence can then be used to detect P, ORS, and T "
waves. ]
d
d
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Relevance to Normal/Abnormal ECG Rhythm Detection
(cont.)

m Problem 3 is used to generate the model parameters that
best fit agiven training set of observations. In effect, the
solution to Problem 3 alows us to build the model. This
problem must be solved first before we can solve Problems
1 and 2. Problem 3 is more difficult to solve than Problems
1 and 2.

aalaa4a
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Markovian Property of State Sequences

m Thesequenceiy, 4, ..., 1., hasthe Markov property:

Pr(iklik-l’ik-z""’iO) = Pr(iklik'l)

that is, the state at timet = k, i, isindependent of al
previous states except I, ;.
m A conseguence of this property is (homework):

A

A
Pr(ik,ik_l,ik_z,...,io):Pr(ik|ik_1)Pr(ik_1|ik_2)---Pr(i1|io)Pr(io) :
: S . . . . . -
notation: Pr(iy i, ;. iy 0.---,i0)° Pr(i, Ci; Ci»C...Ciy) "
d
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Trellis Representation of HMM In Example 1

Q e ¢ e o
\\ / \
\ / \\

/ \
/ \
\
\ / \\
\ / [
O Q ® 1/ 0 o 9 o
/
N
1 \ ! S
/ \
\ /
\
/

/
/
! \\
\ /
\ / N
\ /
2 ' /
\\ /
\ //

1
r
o, © ©® e o0 o o 3
|

o 1 2 3 4 5 6=T1 |

E

1

aalaa4a




Probability of state sequence: | = Q,, Q, Qs, Qu Q1, Qp, Q,

Pr(Qy, Q, Qs Qp, Qp, Q, Q,) = 1*0.3*1*1¥0.2*0.5 = 0.03

V‘a‘”

a,,=0.2

A

A
a,,=0.6 a,,=0.5 -
-
|
|
a
a
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Probability of agiven | and O: Pr(1CO)

observed output sequence: R, Y, B, B, R Y, R
State: QO! Qli Q31 QO! Ql! Ql! QZ

Note that:

Pr(1 ¢ O) = Pr(1)Pr(O]I)

L L L w
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Back to Example 1

output sequence: R, Y, B, B, R Y, R
state:  Qp, Qq, Qa, Qo Qp, Q1 Q,

R B
Q @ o ¢ e ¢ ¢ ¢
“od Ny
02
Ql . ‘\ . 1//’ . ._ _______ —’\\ .
\\ / \\\0_5
\\\ 0.3 / \\\\ .
Q, e o0/ o 0 O ) -
\\\\ BI/II .
.0 © © e o o o -
3 |
1 2 3 4 5 6=T-1 -
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Example (cont.)

output sequence: R, Y, B, B, R Y, R
state:  Qq, Qy, Qs Qor Qp, Q, Q;

Pr(1 C O)=Pr(1)Pr(O]I)

Pr( 1) =Pr( Qo Q1 Qs Qo Qp, Q1, Qy)
=1*0.3*1*1*0.2*0.5 = 0.03

Pr(O|1)=Pr(R,Y,B,B,R Y, R)
=0.3*0.1*0.80.2*0.7*0.1*0.9 = 0.0003024

J

State, Q [B(R) BE) bY) .
0 0.3 0.2 0.5 |
|

-

J

A

1 0.7 02 0.1
2 0.9 0 0.1
3 02 038 0
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Example (cont.)

Pr(1)=0.03
Pr( O|I )= 0.0003024

= Pr(0 N I)=0.03%0.0003024 = 9.072 x10™°

ex) How many possible state sequences are there?

*in general, there are on the order of N possible state
sequences, (for Example 1, that’s 47 = 16,384).

*Since some of the transition probabilities are zero, this
number decreases to only 30.

*Let each state sequence be denoted by 7, i = 1, ...,

R=O(NT).
mAamaJa140
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Total Number of Possible State Sequences: 30
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Distributive-Type Property

since [, i=1,... R = O(NT) are disjoint events:

R R
Pr(z 0N Il-) =Y Pr(OnI;)=Pr(0)
=1 =]

l (by axiofn 2)
since R is so large, this is not a practical solution to Problem 1
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Solution to Problem 1: Forward-Backward Algorithm
We seek Pr(O|A)

Forward variable:

at(i): Pr(009019"‘90t9it = Qz|/l)

*this 1s the probability that we observe the partial
observation sequence, O,,0,,...,0, and arrive at state Q.
at time ¢ (given the model A).

In the forward-backward algorithm the forward variable
1s updated recursively.

Note that the events O,,0,,...,0,,i, = 0O, are disjoint for
each Q..

aalaa4a
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Forward-Backward Algorithm (cont.)

ay(i)=mb;(0y), 0<i< N -1
W fort=0,1,...,7-2,0< j< N-1

()= | Zer e, [ 0,.)

m then,

N-1

d
J
Pr(O|A) =) o, (i) d

i=0 |

the algorithm can be easily implmented via arithmetic
involving the matrices 4, B, and I1. :
d
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Application of Forward-Backward Algorithm to Example 1
T, =1

r,=0, k#0
ay;=1
a;;=0.2

=03
a,,=0.6 a,,=0.5 | State, O | b(R) b(B) b(Y)
0 03 02 05
1 07 02 0.1
2 09 0 0.l
%:0. y 3 02 08 0

eobserved output sequence: R, Y, B, B, R, Y, R

*we don’t know the state sequence
L) R
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Application of Forward-Backward Algorithm to Example 1

o (J)

(cont.)
0 1 2 3
0 0.3 0 0 0
1 0 0.03 0 0
2 0 1.2E-2 0 7.2E-3
3 1.44E-3 4.8E-5 0 2.88E-4
4 8.64E-5 1.0147E-3 2.16E-5 2.88E-6
5 1.44E-6 2.8934E-5 5.15E-5 0
6 0 5.0588E-6  3.1596E-5 7.9281E-6

Pr(O|A) = 44582E -5
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Solution to Problem 2: The Viterbi Algorithm

m We seek the state sequence that maximizes Pl‘([ 10, /1)
m This 1s equivalent to maximizing Pr(/n0O) (given A)

m The trellis diagram representation of HHM’s 1s useful 1n
this regard. We seek the path through the trellis that has the
maximum Pr(/ N O)

m At each column (time step) in the trellis, the Viterbi
algorithm eliminates all but N possible state sequences.

m At each time step, the N retained sequences all end 1n
different states.

m If more than one sequence ends in the same state, the

d
d
d
.
d
sequence with the maximum probability 1s retained. d
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Viterb1 Algorithm (cont.)

/ choose path ending in Q, having highest probability at t = 1.

2O ‘ i
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d
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 1.

Q, ® o o © o o

Q, @) ® o o o o
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 1.

Q, ® o o © o o

Q

N
A
N
A
Qz . .
e
4
4
7’

Jd

Jd

4
Q, & [ o [ o o o ]
d
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Viterb1 Algorithm (cont.)

choose path ending in Q; having highest probability at t = 1.
Q, o o o O o o

Q

Q, ® o o o o

Q;

4
;
;

® o o o o -

0 1 2 3 4 5  6=T1 |
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Viterb1 Algorithm (cont.)

Save each of the N = 4 maximum probabilities in the vector 0,
Save the state at t = 0 in each retained path in the vector ¥,

Q, o o © o o 0
0
¥, =
Q, o ® o o o o 0
._O_J
Q, © o o ® o ®
Q, © @ @) o o

1

1

1

o J
J

0 | 2 3 4 5 6=T-1 F
.

.
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 2.

Qo 0 O O O
Q, o © o o
Q, o o o o
Q;

4
4

;

[ o o o ]
0 1 2 3 4 5  6=T1 |
I
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 2.

4
4

;

[ o o o ]
0 1 2 3 4 5  6=T1 |
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 2.

Qo

Q

Q,

Q;

o o
o o
o o
o o
2 3 4

o
6=T-1
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Viterb1 Algorithm (cont.)

choose path ending in Q, having highest probability at t = 2.

Qo

Q

Q, o o o o
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Viterb1 Algorithm (cont.)

Save each of the N = 4 maximum probabilities in the vector 0,
Save the state at t = 1 in each retained path in the vector ¥,

Qo

Q

Q,

Q;

0 o ®
0.0012 @ o
0 o o
0.0072 @ o
2 3 4

probabilities at t = 2

5

[ n

1
Y =

® 0
L_1_4

o

o

6=T-1
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Viterb1 Algorithm (cont.)

continue until t = T-1 o
final probabilities

Q, 0

@& —©@ 2.82E-6

Ql o \ \
Q, © 1.81E-5 |

J

Jd
Q, © 6.05E-6
J
J
J
UL QRN
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Viterb1 Algorithm (cont.)

emaximum final probability defines best path

*must backtrack through the ¥, to find it final probabilities
Qo 0
Q, ® 2.82E-6
Q, 1.81E-5 |
4
, o
Q, © ® & O ® @ 605E-6py
d
1 2 3 4 5 6="T-1 F
N
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The Viterbi Algorithm

m Initidization (t = 0):
(i) =pb(0,). OEIEN-1

Y,(i)=0
m Time Recursion

For LEt£T-1, O£ j£N-1
d,(j)= max dt-l(i)@j]bj (C)

OEif N-l[

Y.(i) = argmaxd,,(i)a; |

OEIiEN-1

d
d
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The Viterbi Algorithm (cont.)

m Termination:

P_ = maxl[dT_l(i)]

OEIEN-

Lm:ﬂwmﬂ¢ﬂm

OEIEN-1

m State seguence backtracking:

Fort=T-2, T-3,...,0
it - Yt+1(it+l)

aalada4a
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Backward Variable

b, (i) =Pr(0.;,0.s,-.-, 0 4li, = Q.1 )

To understand this variable, assume that the current time
stepis“t”, the current state is“Q,”, and we know the

probabilities:
b..(i) j=0,..N-1

then it snould be clear that:
b.(i) = gla_b.(om)bm(j), OELIiE£EN-1 OEtET-2

Jd

) .

i=0 B

since each of the N events: ]
O, OparesOrliy =Q;, j=0,...,N-1 N

L i
aredigoint. -
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Backward Variable (cont.)

The backward variable can be computed recursively,
moving backward in time.

1. initidizeatt=T-1,
b,,(i)=1 i=0,..N-1
2.fort=T-2:-1:0
1

Jd
. Jd
b,(i)=a a;b,(0n.)bu(i), OEI£N-1 4

j=0 |
|
|
Jd
Jd
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More Definitions

The probability of landing in state Q; at timet, given the
observation sequence O is.

g,(i) ° Pr(i, =QIO1 )

consider the previous definitions:
a,(i)=Pr(0,,0,,...,0,,i, =Ql) .
b, (i) =Pr(O.;,0.s,-.-, 0 4li, = Q.1 ) d
d
hence, for agiven mode! | : d
J
J
d
d

()b, (i) = Pr(05,0;,--,0r, G i, = Q)
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More Definitions (cont.)

Hence: g.(i1) = aPtr(EZ;It()I)

now consider the probability that we go from state Q. at time
t to state Q, at time t+1 given the observation O:

X,(i.])° Pr(i, = Qi =QlO,1 )

It follows that

- _ai)ayb; (O )bua(i)
x{i. )= Pr(O]l ) J

aalada4a
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More Definitions (cont.)

the average number of transitions made from Q:;:

d
d
d
d
d
d
d
d
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Solution to Problem 3: Baum-Welch

Algorithm
0. Initialize A, B, and P

1. Compute a (i), b,(i) and pr(O|l )

2. Computext(i, i) and ,(i)

x(i, ) = a, (i)a;b; (0.1)be.s(i) () t(() ()

Pr(O|l )

3.C t .
ompute | _ (

)
T-
4. Compute a .( )
t
-

aalada4a
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Baum-Welch Algorithm (cont.)

5. Compute
To 1
a 9.(i)
OV
bj (k) - T;-1 _
a 9.(i)
t=0
.
/.gotostep 2 N
d
. . _ =
Pr(O|l ) should continue to increase until A, B, and P convergeto i
optimum values, at which point the algorithm is terminated. d
d
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Case Study: Coast et al.

m Used continuous density for observations:

2

1 - V- m)/s;
h(v) — e 0'5(( 1)/ |)

\2PS;

This alters most of the formulas we |looked at but
the basic ideas remain the same.

m Observations consisted of actual ECG samples.
m Used severa rhythm HMM modelsin parallel

m Viterbi algorithm was used to select the most likely
sequence (and hence rhythm type).
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