
           The Viterbi Algorithm 



Examples (cont.)

A B⊂ ⊂Ω Ω,Suppose two events                           are not mutually exclusive:

A B∩ ≠ φ
Then 

( ) ( ) ( ) ( )Pr Pr Pr PrA B A B A B∪ = + − ∩

proof:

A B A A B∪ = ∪ ∩

( ) ( ) ( )Pr Pr PrA AB A A B∪ = + ∩
B A B A B= ∩ ∪ ∩

mutually exclusive

( ) ( ) ( )Pr Pr PrB A B A B= ∩ + ∩

( ) ( ) ( ) ( )BABABA ∩−+=∪⇒ PrPrPrPr



Examples (cont.)

A ⊂ Ωif               then       is the event corresponding to 
“A did not occur”, and

A

( ) ( )Pr PrA A= −1

ex) 1 roll of a fair die

if A = {roll is even} then      = {roll is odd}A

Pr(A) = 1 - Pr(    ) = 0.5A



Examples (cont.)

ex) A fair coin is tossed 3 times in succession. 

Events: A- get a total of 2 heads
B- get a head on second toss

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A:                 x        x                   x
B:    x           x                             x       x    

Pr(A) = 3/8  Pr(B) = 4/8   Pr( ) = 2/8

( )Pr / / / /A B∪ = + − =3 8 4 8 2 8 5 8

A B∩



Conditional Probability

( ) ( )
( )

Pr |
Pr

Pr
A B

A B

B
≡

∩

ex) A fair coin is tossed 3 times in succession. 

Events: A- get a total of 2 heads
B- get a head on second toss

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A:                 x        x                   x
B:    x           x                             x       x    

Pr(B) = 4/8,  Pr( ) = 2/8, Pr(A | B) = (2/8) / (4/8) = 1/2A B∩



Examples (cont.)

ex) A fair die is thrown once:

�Ω = {1, 2, 3, 4, 5, 6}
•A- roll a “2”
•B- roll is even
•Pr(A) = 1/6  Pr(B) = 3/6

P(A | B) = (1/6)/(3/6) = 1/3

( ) ( )Pr Pr /A B A∩ = = 1 6

note Pr(A | A) = 1, and if A and B are independent events: 

( ) ( )Pr | PrA B A=



Hidden Markov Models (HMM’s)

example 1)
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Q1
Q3

a01=1

a11=0.2a13=0.3

a12=0.5
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a23=0.6
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π
π
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=
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Example of an HMM

n The aij are state transition probabilities, give the 
probability of moving from state i to state j.

n Note that:

n At state Qi, one of 3 output symbols, R, B, or Y is 
generated with probabilities

aij
j

∑ =1

( ) ( ) ( )b R b B b Yi i i, ,  or 

State, Qi bi(R) bi(B) bi(Y)

0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0



Example of an HMM (cont.)
n One output symbol is generated per state (like a Moore 

state machine).

n Often the observed output symbols bear no obvious 
relationship to the state sequence (i.e. states are “hidden”).

n Knowing the state sequence generally provides more 
useful information about the characteristics of the signal 
being analyzed than the observed output symbols (as was 
the case with syntactic recognition).

possible output sequence:   R,   Y,  B,   B,   R,   Y,  R, ...
state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2, ...



Definition of Hidden Markov Models

n there are T observation times: t = 0, …, T-1

n there are N states: Q0,…, QN-1

n there are M observation symbols: v0, …, vM-1

n state transition probabilities: 

n symbol probabilities:

n initial state probabilities:

( )a Q t Q tij j i= +Pr | at time    at time 1

( ) ( )b k v t Q tj k j= Pr | at time    at time 

( )πi iQ t= =Pr  at 0



Definition of Hidden Markov Models (cont.)

n Define the matrices A, B, and Π:

n Notation for observation sequence:

n Notation for state sequence: I = i0, i1, …, iT-1

{ }A a i j N
ij ij= = −, , , ,  0 1K

{ } ( )B b k j N k M
jk j= = − = −, , , , , ,    0 1 0 1K K

notation for HMM: λ = (A, B, Π)
O O O OT= −0 1 1, , ,K

{ }Π
i i i N= = −π , , ,  0 1K



Three Fundamental Problems

n Problem 1: Given the observation sequence                       
and the model λ = (A, B, Π), how do we compute the 
probability of the observation sequence, Pr(O | λ)?

n Problem 2: Given the observation sequence                       
and the model λ = (A, B, Π), how do we estimate the state 
sequence, I = i0, i1, …, iT-1 which produced the 
observations?

n Problem 3: How do we adjust the model parameters λ = 
(A, B, Π) to maximize Pr(O | λ)?

O O O OT= −0 1 1, , ,K

O O O OT= −0 1 1, , ,K



Relevance to Normal/Abnormal ECG Rhythm Detection

n Suppose we have one HMM that models normal rhythm, 
and a second HMM that models abnormal rhythm, and we 
have a measured observation sequence. Problem 1 can be 
used to determine which is the most likely model for the 
measured observations, hence, we can classify the rhythm 
as normal or abnormal.

n Suppose we have a single model which enables us to 
associate certain states with with the components of the 
ECG (P, QRS, and T waves). Problem 2 can be used to 
estimate the states from the observation sequence. The 
state sequence can then be used to detect P, QRS, and T 
waves.



Relevance to Normal/Abnormal ECG Rhythm Detection 
(cont.)

n Problem 3 is used to generate the  model parameters that 
best fit a given training set of observations. In effect, the 
solution to Problem 3 allows us to build the model. This 
problem must be solved first before we can solve Problems 
1 and 2. Problem 3 is more difficult to solve than Problems 
1 and 2.



Markovian Property of State Sequences

n The sequence i0, i1, …, iT-1 has the Markov property:

n A consequence of this property is (homework):

( ) ( )Pr | , , , Pr |i i i i i ik k k k k− − −=1 2 0 1K

that is, the state at time t = k, ik ,  is independent of all 
previous states except ik-1.

( ) ( ) ( ) ( ) ( )Pr , , , , Pr | Pr | Pr | Pri i i i i i i i i i ik k k k k k k− − − − −=1 2 0 1 1 2 1 0 0K L

( ) ( )Pr , , , , Pri i i i i i i ik k k k k k− − − −≡ ∩ ∩ ∩ ∩1 2 0 1 2 0K Knotation:



Trellis Representation of HMM in Example 1
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Q0

Q2

Q1
Q3

a01=1

a11=0.2a13=0.3

a12=0.5

a22=0.4

a23=0.6

a30=1

Pr(Q0, Q1, Q3, Q0, Q1, Q1, Q2) = 1*0.3*1*1*0.2*0.5 = 0.03

Probability of state sequence: I = Q0, Q1, Q3, Q0, Q1, Q1, Q2



Probability of a given I and O:

observed output sequence:   R,   Y,  B,   B,   R,   Y,  R
state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2

( )Pr I O∩

( ) ( ) ( )Pr Pr Pr |I O I O I∩ =

Note that:



Back to Example 1
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Q3

0          1          2          3          4          5        6 = T-1

1
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1

1
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output sequence:   R,   Y,  B,   B,   R,   Y,  R
state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2
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Example (cont.)

Pr( I ) = Pr( Q0, Q1, Q3, Q0, Q1, Q1, Q2) 
= 1*0.3*1*1*0.2*0.5 = 0.03

Pr( O | I ) = Pr( R, Y, B, B, R, Y, R) 
= 0.3*0.1*0.8*0.2*0.7*0.1*0.9 = 0.0003024

( ) ( ) ( )Pr Pr Pr |I O I O I∩ =

output sequence:   R,   Y,   B,   B,   R,  Y,  R
state:   Q0, Q1, Q3, Q0, Q1, Q1, Q2

State, Qi bi(R) bi(B) bi(Y)

0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0



Example (cont.)

Pr( I ) = 0.03
Pr( O|I ) =  0.0003024

( )⇒ ∩ = × = × −Pr . . .O I 0 03 0 0003024 9 072 10 6

ex) How many possible state sequences are there?

•in general, there are on the order of NT possible state 
sequences, (for Example 1, that’s 47 = 16,384).
•Since some of the transition probabilities are zero, this 
number decreases to only 30.
•Let each state sequence be denoted by Ii, i = 1, …, 
R=O(NT).



Total Number of Possible State Sequences: 30

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1



Distributive-Type Property

( ) ( )Pr Pr PrO I O I Oi
i

R

i
i

R
∩







 = ∩ =

= =
∑ ∑

1 1

( )since   are d isjo in t events:I i R O Ni
T, ,= ≡1

since R is so large, this is not a practical solution to Problem 1

OI3 I1

I2

(by axiom 2)

R = 3



Solution to Problem 1: Forward-Backward Algorithm

Forward variable:

( ) ( )α λt t t ii O O O i Q= =Pr , , , , |0 1

•this is the probability that we observe the partial 
observation sequence,                      and arrive at state Qi
at time t (given the model λ).
•In the forward-backward algorithm the forward variable
is updated recursively.
•Note that the events                                 are disjoint for 
each Qi.

O O Ot0 1, , ,

O O O i Qt t i0 1, , , , =

We seek ( )Pr |O λ



Forward-Backward Algorithm (cont.)

�

� then,

( ) ( )α π0 0 0 1i b O i Ni i= ≤ ≤ −,    

for    t = , , , T- , j N-0 1 2 0 1≤ ≤

( ) ( ) ( )α α t t ij
i

N

j tj i a b O+
=

−

+= 





∑1
0

1

1

( ) ( )Pr |O iT
i

N
λ α= −

=

−

∑ 1
0

1

the algorithm can be easily implmented via arithmetic
involving the matrices A, B, and Π.



Application of Forward-Backward Algorithm to Example 1

Q0

Q2

Q1
Q3

a01=1

a11=0.2a13=0.3

a12=0.5

a22=0.4

a23=0.6

a30=1

π
π

0 1
0 0

=
= ≠k k,   

•observed output sequence:   R,   Y,  B,   B,   R,   Y,  R
•we don’t know the state sequence                                

State, Qi bi(R) bi(B) bi(Y)

0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0



Application of Forward-Backward Algorithm to Example 1 
(cont.)

0 1 2 3

0 0.3 0 0 0

1 0 0.03 0 0

2 0 1.2E-2 0 7.2E-3

3 1.44E-3 4.8E-5 0 2.88E-4

4 8.64E-5 1.0147E-3 2.16E-5 2.88E-6

5 1.44E-6 2.8934E-5 5.15E-5 0

6 0 5.0588E-6 3.1596E-5 7.9281E-6

j

( )α t j

t

( )Pr | .O λ = −4 4582 5E



Solution to Problem 2: The Viterbi Algorithm

� We seek the state sequence that maximizes 
� This is equivalent to maximizing                   (given λ)
� The trellis diagram representation of HHM’s is useful in 

this regard. We seek the path through the trellis that has the 
maximum

� At each column (time step) in the trellis, the Viterbi 
algorithm eliminates all but N possible state sequences. 

� At each time step, the N retained sequences all end in 
different states. 

� If more than one sequence ends in the same state, the 
sequence with the maximum probability is retained.

( )Pr | ,I O λ
( )Pr I O∩

( )Pr I O∩



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

t

choose path ending in Q0 having highest probability at t = 1.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

t

choose path ending in Q1 having highest probability at t = 1.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q2 having highest probability at t = 1.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q3 having highest probability at t = 1.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

Save each of the N = 4 maximum probabilities in the vector δt
Save the state at t = 0 in each retained path in the vector Ψt

Ψ0

0
0
0
0

=





















Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q0 having highest probability at t = 2.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q1 having highest probability at t = 2.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q2 having highest probability at t = 2.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

choose path ending in Q3 having highest probability at t = 2.



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

Save each of the N = 4 maximum probabilities in the vector δ2
Save the state at t = 1 in each retained path in the vector Ψ1

Ψ1

0
1
0
1

=



















0

0.0012

0

0.0072

probabilities at t = 2



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

continue until t = T-1
final probabilities

0

2.82E-6

1.81E-5

6.05E-6



Viterbi Algorithm (cont.)

Q0

Q1

Q2

Q3

0          1          2          3          4          5        6 = T-1

final probabilities
•maximum final probability defines best path
•must backtrack through the Ψt to find it

0

2.82E-6

1.81E-5

6.05E-6



The Viterbi Algorithm

n Initialization (t = 0):

n Time Recursion

( ) ( )δ π0 0 0 1i b O i Ni i= ≤ ≤ −,    

( )Ψ1 0i =

( ) ( )[ ] ( )

( ) ( )[ ]

For 1 t T-1,   0 j N -1

   i

    i

 t t-1

t t-1

≤ ≤ ≤ ≤

=

=
≤ ≤

≤ ≤

δ δ

δ

j a b O

j a

i N-
ij j t

i N-
ij

max

arg max

0 1

0 1
Ψ



The Viterbi Algorithm (cont.)

n Termination:

n State sequence backtracking:

( )[ ]
( )[ ]

P i

i i
i N

T

T
i N

T

max max

arg max

=

=
≤ ≤ − −

−
≤ ≤ −

−

0 1
1

1
0 1

1

δ

δ

( )
For 

   

t=T- , T- , , 

i it t t

2 3 0

1 1

K

= + +Ψ



Backward Variable

( ) ( )β λ t t t T t ii O O O i Q= =+ + −Pr , , , | ,1 2 1K

To understand this variable, assume that the current time
step is “t ”, the current state is “Qi”, and we know the
probabilities:

( )β t j j N+ = −1 0 1, ,   K

then it should be clear that:

( ) ( ) ( )β β t ij j t
j

N

 ti a b O j i N t T= ≤ ≤ − ≤ ≤ −+
=

−

+∑ 1
0

1

1 0 1 0 2, ,     

since each of the N events:

O O O i Q j Nt t T t j+ + − = = −1 2 1 0 1, , , | , , ,K K   

are disjoint.



Backward Variable (cont.)

The backward variable can be computed recursively,
moving backward in time.

1. initialize at t = T - 1,

2. for t = T - 2 : -1 : 0

( )β  T i i N− = = −1 1 0 1, ,   K

( ) ( ) ( )β β t ij j t
j

N

 ti a b O j i N= ≤ ≤ −+
=

−

+∑ 1
0

1

1 0 1,    



More Definitions

( ) ( )γ λt t ii i Q O≡ =Pr | ,

The probability of landing in state Qi at time t, given the
observation sequence O is:

consider the previous definitions:

( ) ( )β λ t t t T t ii O O O i Q= =+ + −Pr , , , | ,1 2 1K

( ) ( )α λt t t ii O O O i Q= =Pr , , , , |0 1 K

( ) ( ) ( )α β t  t T t ii i O O O i Q= ∩ =−Pr , , ,0 1 1K

hence, for a given model λ:



More Definitions (cont.)

( ) ( ) ( )
( )

γ
α β

λt
 t  ti

i i

O
=

Pr |
Hence:

now consider the probability that we go from state Qi at time
t to state Qj at time t+1 given the observation O:

( ) ( )ξ λt t i t ji j i Q i Q O, Pr , | ,≡ = =+1

it follows that

( ) ( ) ( ) ( )
( )

ξ
α β

λ t i j
i a b O j

O
t ij j t t,

Pr |
= + +1 1



More Definitions (cont.)

the  average number of transitions made from Qi:

the  average number of transitions made from Qi to Qj:

( )γ t
t

T

i
=

−

∑
0

2

( )ξt
t

T

i j,
=

−

∑
0

2



Solution to Problem 3: Baum-Welch
Algorithm

( )γ t i( )ξt i j,

0. Initialize A, B, and Π

1. Compute         ,          and

2. Compute              and

3. Compute

4. Compute

( )α t i ( )β t i ( )Pr |O λ

( )π γi i i N= ≤ − 1,    

( ) ( ) ( )
( )

 t  t( ) ( ) ( ) ( )
( )

ξ
α β

λ t i j
i a b O j

O
t ij j t t,

Pr |
= + +1 1

( )

( )

t
t

T

t
t

T

−

=

−

∑

γ

2

0

2



Baum-Welch Algorithm (cont.)

5. Compute

7. go to step 2

( )

( )

( )
b k

j

j
j

t
t

O v

T

t
t

T
t k=
=
=

−

=

−

∑

∑

γ

γ

0

1

0

1

          should continue to increase until A, B, and Π converge to
optimum values, at which point the algorithm is terminated.
( )Pr |O λ



Case Study: Coast et al.

n Used continuous density for observations:

n Observations consisted of actual ECG samples.

n Used several rhythm HMM models in parallel

n Viterbi algorithm was used to select the most likely
sequence (and hence rhythm type).

( ) ( )( )b v ei
i

v i i= − −1
2

0 5 2

πσ
µ σ. /

This alters most of the formulas we looked at but
the basic ideas remain the same.




