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Optimal noncausal Wiener filter

We observe (X (t),t € R), with X (¢) = S(¢) + V(t), where (S(¢),t € R) is a WSS process of
interest, called the signal process, and (V (t),t € R) is some WSS noise. The noise and signal
processes are assumed to be jointly WSS. Further, the autocorrelation functions of the signal
and noise processes and the cross-correlation function between the signal and noise processes
are assumed to be known. For simplicity, assume all the processes have zero mean.

Assume that we have available the entire observation (X (u),u € R) and, for some fixed ¢, it is
desired to find the the LLSE (linear least mean square error) estimate S(t) of S(¢), i.e

S(t) = LIS() | (X (u), —00 < u < 00)]

Because of the joint wide sense stationarity of the processes involved, this estimate can be
written as S(t) = [°°_ h(u)X (t — u)du where (h(u), —0o < u < o0) is some fixed function that
does not depend on ¢, and chosen so that it minimizes E[| S(t) — S(t) [?]. Namely, S(t) is the
output for input (X (u),u € R) of a (possibly noncausal) LTI (linear time invariant) system
with an appropriately chosen impulse response (h(u), —0co < u < 00).

By the orthogonality principle, S(¢)

t)— S(t ) must be uncorrelated with X (u) for all —oo < u < oo,
and we must also have E[S(t) — S(t)] =

0. Expanding E[(S(t) — S(t)) - X*(u)] = 0 gives

/ h(V)E[X (t—v) X" (u)]dv = E[S(t) X™(u)]
Setting u =t — 7 results in the equation
/ h(v)Rxx(r —v)dv= Rsx(r), forallTeR.

— 00

Taking the Fourier transform of this equation we get
H(w)Sxx(w)=S5sx(w), forallweR.

This means we must have

Ssx (w)
Sxx(w) '

H(w)=

This is the optimal noncausal Wiener filter.



Optimal causal Wiener filter

Consider now the problem of determining a LTI filter whose output S(t) at time ¢ is the LLSE
estimate of S(t+ A), given the observations up to time t, i.e.

S(t) = LISt + M| (X (u), =00 < u < 1)]
If A < 0 we call the problem one of smoothing, and if A > 0 we call it one of prediction.

The problem can be rephrased as one of finding a causal impulse response h(-) such that
St) = o7 h(u)X (t — u)du minimizes E[| S(t) — S(t + A) |?]. By the orthogonality principle,
the error of any such estimate must be orthogonal to all the data. This gives the equations

E[(S(t) = S(t+ M) X*(uw)]=0 forallu<t
which can be rewritten as
/OOO h(v)E[X(t —v) X" (u)]dv = E[S(t+ A)X"(u)] forall u<t
or, by writing u =t — 7, as

/ h(v)Rxx(r —v)dv= Rgx(r+A) forall7™>0
0

where 7 =t — u. Equations of this type are called Wiener-Hopf equations.

As such, this is a difficult equation to solve (our job is to solve it to find h(-)). However, we
observe that if (X (¢),t € R) were a white noise process, its autocorrelation function would be a
(scaled) ¢ function, and then this equation is just reading out the optimal i(-) as proportional to
a time shift of the cross-correlation between the signal and the observations, which we assumed
known. This suggests a method of attack : try to re-express the problem as one in which the
observation process is white noise.

This idea cannot always be carried out. However it can be carried out if (X (¢),t € R) has
a rational spectral density that does not have any pure imaginary zeros. This includes most
applications of practical interest. In this case we can find a causal stable LTI system with
one-sided Laplace transform L(s), called the innovations filter, having a causal stable inverse
with one-sided Laplace transform I'(s), called the whitening filter such that the power spectral
density of (X (¢),t € R) is the same as that of the output of the innovations filter when its
input is white noise. Since the innovations filter is causal and stable with a causal and stable
inverse (such a filter is called minimum phase) the knowledge contained in (X (u),u < ¢) for
any t € R is equivalent to that contained in the white noise process that is the output process
of the whitening filter when its input is (X (¢),¢ € R). This allows one to find the optimal filter
h(-) by the following algorithm (when (X (¢),t € R) has rational spectral density having no
pure imaginary zeros) :

1) Factor Sy x(s) = L(s)L(—s), where L(s) is stable and causal, with stable and causal inverse

I'(s) = L(ls).




2) Let Sgr(s) = I'(—s)Ssx (s). This is the two sided Laplace transform of the cross-correlation
of the signal with the white noise process (/(t),¢ € R) that is the output of the whitening filter
when its input is (X (t),t € R).

3) Find Rsy(7).

4) Let gopt(7) = Rsr(T + A)u(r), where u(7) denotes the unit step function, and let Gy (s) be
the Laplace transform of ¢,,¢(7).

5) Let Hypi(s) = I'(s)Gopt(s). The optimal causal Wiener filter hyp(7) is the causal inverse
Laplace transform of Ho,(s).

An example

Suppose the received signal X (t) = S(¢) + V() where the noise (V(¢),t € R) is WSS white
noise with power spectral density Syv(s) = 3, and the signal is a sample from a WSS process
(S(t),t € R) with Rgs(7) = exp(— | 7 |). Further assume that the signal and noise processes
are jointly WSS and Rgy (1) = 0.

The problem is to determine the LLSE optimal causal predictor for S(t+1) given (X (u),u < t).
We follow the steps above.
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Sxx(s) is a rational power spectral density, and has the following pole zero decomposition.

Im‘

12
2 -1 1
- 53) (5/3) Re

Picking for L(s) the LHP (Left Half Plane) singularities, we see that we can write Syx(s) =



L(s)L(—s) where a3 )
+ s + s
Lo == TO=Fia

Here L(s) is stable, causal and minimum phase.

2)
So1(s) = T Ssx () = V(=8)8535(5) = s -
3)
Ser(s) = — 4 b . 2 - 2V/3
R RV R AVE RAVE R AVE I
Hence, using the fact that Rsr(7) — 0 as | 7 |[— oo, we have
Rst(7) = aexpl-rutr) + Sbexp(SEryat-7)

4) Here A = 1. Hence
Gopt(7) = Rsp(T+ Du(r) = aexp(—(7+ 1))u(r) .

Note that Gop(s) = )

5) Hopt(s) = I'(8)Gopt(s) = m From this, we get

hopt (T) = \a/_exp( ﬁr)u(r) .



