-

Handout 12 Wiener filter contraction of the CV. Anantharam CV. Anantharam

-

Optimal noncausal Wiener filter

We observe $(X(t), t \in \mathbf{R})$, with $X(t) = S(t) + V(t)$, where $(S(t), t \in \mathbf{R})$ is a WSS process of interest, called the signal process, and $(V(t), t \in \mathbf{R})$ is some WSS noise. The noise and signal processes are assumed to be jointly WSS. Further, the autocorrelation functions of the signal and noise processes and the cross-correlation function between the signal and noise processes are assumed to be known. For simplicity, assume all the processes have zero mean.

Assume that we have available the entire observation $(X(u), u \in \mathbf{R})$ and, for some fixed t, it is desired to find the the HPDF (finear least mean square error) estimate $D(t)$ or $D(t)$, i.e.

$$
S(t) = L[S(t) | (X(u), -\infty < u < \infty)]
$$

Because of the joint wide sense stationarity of the processes involved, this estimate can be written as $S(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ where $(h(u), -\infty < u < \infty)$ is some fixed function that does not depend on ι , and chosen so that it minimizes $E\cap S(\iota) = S(\iota)$ - Namely, $S(\iota)$ is the output for input $(X(u), u \in \mathbf{R})$ of a (possibly noncausal) LTI (linear time invariant) system with an appropriately enoden impulse response $\{w_1, w_2, \ldots, w_n\}$.

By the orthogonality principle, $\beta(t) = \beta(t)$ indict be uncorrelated with $\Lambda(u)$ for all $-\infty < u < \infty$, and we must also nave $E[S(t) - S(t)] \equiv 0$. Expanding $E[(S(t) - S(t))] \cdot A$ $(u)] \equiv 0$ gives

$$
\int_{-\infty}^{\infty} h(v) E[X(t-v)X^*(u)]dv = E[S(t)X^*(u)]
$$

 S -setting we result to the extra substantial subst

$$
\int_{-\infty}^{\infty} h(v) R_{XX}(\tau - v) dv = R_{SX}(\tau) , \quad \text{for all } \tau \in \mathbf{R} .
$$

Taking the Fourier transform of this equation we get

$$
H(\omega)S_{XX}(\omega) = S_{SX}(\omega) , \text{ for all } \omega \in \mathbf{R} .
$$

This means we must have

$$
H(\omega) = \frac{S_{SX}(\omega)}{S_{XX}(\omega)}.
$$

This is the *optimal noncausal Wiener filter*.

Optimal causal Wiener filter

Consider now the problem of determining a LTI mear whose output $S(t)$ at time t is the LLSL estimate of $S(t + \lambda)$, given the observations up to time t, i.e.

$$
\dot{S}(t) = L[S(t + \lambda \mid (X(u), -\infty < u \leq t)]
$$

If $\lambda \leq 0$ we call the problem one of *smoothing*, and if $\lambda > 0$ we call it one of *prediction*.

the problem can be rephrased as one of multiple weapon mipulse response η , such that $S(t) = \int_0^\infty h(u) X(t-u) du$ minimizes $E[|S(t) - S(t+\lambda)|^2]$. By the orthogonality principle, the error of any such estimate must be orthogonal to all the data This gives the equations

$$
E[(\hat{S}(t) - S(t + \lambda))X^*(u)] = 0 \quad \text{for all } u \le t
$$

which can be rewritten as

$$
\int_0^\infty h(v)E[X(t-v)X^*(u)]dv = E[S(t+\lambda)X^*(u)] \quad \text{ for all } u \le t
$$

or by writing ^u ^t - - as

$$
\int_0^\infty h(v) R_{XX}(\tau - v) dv = R_{SX}(\tau + \lambda) \quad \text{for all } \tau \ge 0
$$

where α - α -

as such this is a diment equation to solve four for it to solve it to much before it to the food it to the sol observe that if $(X(t), t \in \mathbb{R})$ were a white noise process, its autocorrelation function would be a (scaled) δ function, and then this equation is just reading out the optimal $h(\cdot)$ as proportional to a time shift of the cross-correlation between the signal and the observations, which we assumed known. This suggests a method of attack : try to re-express the problem as one in which the observation process is white noise

This idea cannot always be carried out. However it can be carried out if $(X(t), t \in \mathbb{R})$ has a *rational spectral density* that does not have any pure imaginary zeros. This includes most applications of processes interests in this case with this case we causal stable and a causal with \sim one-sided Laplace transform $L(s)$, called the *innovations filter*, having a causal stable inverse with one-sided Laplace transform $\Gamma(s)$, called the *whitening filter* such that the power spectral density of $(X(t), t \in \mathbf{R})$ is the same as that of the output of the innovations filter when its input is white noise Since the innovations lter is causal and stable with a causal and stable inverse (such a miter is called *minimum phase*) the knowledge contained in $(X(u), u \times v)$ for any $t \in \mathbf{R}$ is equivalent to that contained in the white noise process that is the output process of the whitening filter when its input is $(X(t), t \in \mathbf{R})$. This allows one to find the optimal filter $h(\cdot)$ by the following algorithm (when $(X(t), t \in \mathbf{R})$) has rational spectral density having no pure imaginary zeros

 \mathcal{L}_I is stable \mathcal{L}_I \mathcal{L}_I \mathcal{L}_I \mathcal{L}_I is stable and causal with stable and causal inverse $1 (s) = \frac{1}{L(s)}$.

 \blacksquare is strongly space to sign the two sided Laplace transform of the cross correlation of the signal with the white noise process $(I(t), t \in \mathbf{R})$ that is the output of the whitening filter when its input is $(X(t), t \in \mathbf{R})$.

 σ / \pm 1.1. \pm 1.0. σ / \cdot / \cdot

 \mathcal{L}_1 as \mathcal{L}_2 and \mathcal{L}_3 . The u-denotes the unit step function, which is equally be $\sum_{i=1}^{n}$

 σ , here for σ , σ Laplace transform of $H_{opt}(s)$.

An example

Suppose the received signal $X(t) = S(t) + V(t)$ where the noise $(V(t), t \in \mathbf{R})$ is WSS white noise with power spectral density $S_{VV}(s) = 3$, and the signal is a sample from a WSS process $(S(t), t \in \mathbf{R})$ with $R_{SS}(\tau) = \exp(-|\tau|)$. Further assume that the signal and noise processes are jointly whose and $\mathcal{L}_{\mathcal{Q}}(V, V)$ or

The problem is to determine the LLSE optimal causal predictor for $S(t+1)$ given $(X(u), u < t)$. We follow the steps above.

 $1)$

$$
S_{SS}(s) = \frac{1}{1+s} + \frac{1}{1-s} = \frac{2}{1-s^2}.
$$

$$
S_{XX}(s) = S_{SS}(s) + S_{SV}(s) + S_{VS}(s) + S_{VV}(s) = \frac{2}{1-s^2} + 0 + 0 + 3 = \frac{5-3s^2}{1-s^2}.
$$

 $S_{XX}(s)$ is a rational power spectral density, and has the following pole zero decomposition.

Picking for $L(s)$ the LHP (Left Half Plane) singularities, we see that we can write $S_{XX}(s)$ =

 $\frac{1}{2}$ and $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$

$$
L(s) = \frac{\sqrt{5} + \sqrt{3}s}{1 + s} , \qquad \Gamma(s) = \frac{1 + s}{\sqrt{5} + \sqrt{3}s} .
$$

Here $L(s)$ is stable, causal and minimum phase.

2)

$$
S_{SI}(s) = \Gamma(-s)S_{SX}(s) = \Gamma(-s)S_{SS}(s) = \frac{2}{(1+s)(\sqrt{5}-\sqrt{3}s)}.
$$

3)

$$
S_{SI}(s) = \frac{a}{1+s} + \frac{b}{\sqrt{5} - \sqrt{3}s} \quad \text{where } a = \frac{2}{\sqrt{5} + \sqrt{3}}, \ b = \frac{2\sqrt{3}}{\sqrt{5} + \sqrt{3}} \ .
$$

 $\sum_{i=1}^{\infty}$ that fact that $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$, $\sum_{i=1}^{\infty}$ is the fact that $\sum_{i=1}^{\infty}$

$$
R_{SI}(\tau) = a \exp(-\tau)u(\tau) + \frac{1}{\sqrt{3}}b \exp(\frac{\sqrt{5}}{\sqrt{3}}\tau)u(-\tau) .
$$

4) Here $\lambda = 1$. Hence

$$
g_{opt}(\tau) = R_{SI}(\tau + 1)u(\tau) = a \exp(-(\tau + 1))u(\tau).
$$

Note that $G_{opt}(s) = \frac{1}{e(1+s)}$.

 $\sigma(t) = \sigma(s)G_{opt}(s) = \frac{1}{e(\sqrt{5}+\sqrt{3}s)}$. From this, we get

$$
h_{opt}(\tau) = \frac{a}{e\sqrt{3}} \exp\left(-\frac{\sqrt{5}}{\sqrt{3}}\tau\right) u(\tau) .
$$