The Whitened-Matched Filter Channel Model

ORIGINAL PASSBAND MODEL:

TRANSMIT PULSE

\[g(t) \]

\[\tilde{s}(t) \]

\[e^{j2\pi f_0 t} \]

\[\Re\{ \cdot \} \]

Lowpass to bandpass

\[s(t) \]

\[c(t) \]

\[h(t) \]

\[h^*(-t) \]

\[r(t) \]

\[r_k \]

\[\text{AWGN} \quad \text{(N}_0/2 \text{)} \]

\[2u(f) \]

\[e^{-j2\pi f_0 t} \]

\[\text{MATCHED FILTER} \]

\[\text{MATCHED FILTER} \]

\[\text{WHITENED-MATCHED FILTER (WMF)} \]

THE SMF CHANNEL MODEL

\[\tilde{x}(k) = x(kT) = \langle h(t + kT), h(t) \rangle = \alpha^2 f_k * f_{-k^*} = \text{sampled autocorrelation function of received pulse shape} \]

\[\alpha^2 \]

\[F(z) \]

\[\frac{1}{\alpha^2 F^*(1/z^*)} \]

\[\text{THE WMF CHANNEL MODEL} \]

\[\text{DEFINITIONS:} \]

\[g(t) = \text{transmit pulse shape} \]

\[c(t) = \text{impulse response of passband channel} \]

\[\tilde{c}(t) = \text{complex envelope of } c(t), \text{ lowpass} \]

\[h(t) = g(t) * \tilde{c}(t) = \text{received pulse shape} \]

\[p(t) = h(t) * h^*(-t) = \text{autocorrelation function} = \text{“overall” pulse shape} \]

\[x(k) = x(kT) = \langle h(t + kT), h(t) \rangle = \alpha^2 f_k * f_{-k^*} = \text{sampled autocorrelation function of received pulse shape} \]

\[X(z) = \text{folded spectrum} = Z\text{-transform of } x(k) \]

\[F(z) = \text{minimum-phase factor in factorization} \]

\[X(z) = \alpha^2 F(z) F^*(1/z^*) \]